- Author:
Jiaoxiang SHEN
1
;
Wenting SHE
;
Fengxia ZHANG
;
Jihua GUO
;
Rong JIA
Author Information
- Publication Type:ORIGINAL ARTICLE
- From:International Journal of Stem Cells 2022;15(3):301-310
- CountryRepublic of Korea
- Language:English
-
Abstract:
Background and Objectives:RUNX2 plays an essential role during the odontoblast differentiation of dental pulp stem cells (DPSCs). RUNX2 Exon 5 is an alternative exon and essential for RUNX2 transcriptional activity. This study aimed to investigate the regulatory mechanisms of RUNX2 exon 5 alternative splicing in human DPSCs.
Methods:and Results: The regulatory motifs of RUNX2 exon 5 were analyzed using the online SpliceAid program. The alternative splicing of RUNX2 exon 5 in DPSCs during mineralization-induced differentiation was analyzed by RT-PCR. To explore the effect of splicing factor YBX1 on exon 5 alternative splicing, gaining or losing function of YBX1 was performed by transfection of YBX1 overexpression plasmid or anti-YBX1 siRNA in DPSCs. Human RUNX2 exon 5 is evolutionarily conserved and alternatively spliced in DPSCs. There are three potential YBX1 binding motifs in RUNX2 exon 5. The inclusion of RUNX2 exon 5 and YBX1 expression level increased significantly during mineralization-induced differentiation in DPSCs. Overexpression of YBX1 significantly increased the inclusion of RUNX2 exon 5 in DPSCs. In contrast, silence of YBX1 significantly reduced the inclusion of exon 5 and the corresponding RUNX2 protein expression level. Knockdown of YBX1 reduced the expression of alkaline phosphatase (ALP) and osteocalcin (OC) and the mineralization ability of DPSCs, while overexpression of YBX1 increased the expression of ALP and OC and the mineralization ability of DPSCs.
Conclusions:Human RUNX2 exon 5 is conserved evolutionarily and alternatively spliced in DPSCs. Splicing factor YBX1 promotes the inclusion of RUNX2 exon 5 and improves the mineralization ability of DPSCs.