Establishment of HPLC fingerprint and content determination of differential components in Ligusticum sinense
- VernacularTitle:茶芎HPLC指纹图谱的建立及差异性成分的含量测定
- Author:
Weiwei GONG
1
;
Guangming LUO
1
;
Qian QIN
1
;
Jinxiang ZENG
1
;
Conglong XU
2
;
Minggui LIU
2
;
Shouwen ZHANG
1
Author Information
1. School of Pharmacy,Jiangxi University of Chinese Medicine,Nanchang 330004,China
2. Jiangxi Jingde Traditional Chinese Medicine Co.,Ltd.,Jiangxi Jiujiang 332000,China
- Publication Type:Journal Article
- Keywords:
Ligusticum sinense;
fingerprint;
multivariate statistical analysis;
content determination;
quality evaluation;
HPLC
- From:
China Pharmacy
2022;33(16):1968-1973
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE To establish the fingerprints of Ligusticum sinense from different habitats ,screen differential components and determine their contents. METHODS Using Z-ligustilide as reference ,HPLC fingerprints of 12 batches of L. sinense were established by using Similarity Evaluation System of Chromatographic Fingerprints of TCM (2012 edition);common peaks were identified and their similarities were evaluated. Cluster analysis (CA),principal component analysis (PCA)and orthogonal partial least squares-discriminant analysis (OPLS-DA)were performed to screen differential components with variable importance in the projection (VIP)>1 as standard ;meanwhile,the contents of above differential components were determined by the same HPLC method. RESULTS There were 17 common peaks in the fingerprints of 12 batches of L. sinense ,and their similarities ranged 0.989-1.000. A total of 9 common peaks were identified ,i.e. chlorogenic acid (peak 1),ferulic acid (peak 2), senkyunolide Ⅰ(peak 7),coniferyl ferulate (peak 9),E-ligustilide(peak 13),senkyunolide A (peak 14),Z-ligustilide(peak 17). CA results showed that 12 batches of L. sinense were divided into 3 categories,S1-S5(Wuning)were clustered into one category,S6-S8(Ruichang)were clustered into one category ,S9-S12(De’an)were clustered into one category ;the VIP values of peaks 2,13,14 and 17(corresponding to ferulic acid ,E-ligustilide,senkyunolide A ,and Z-ligustilide respectively )were all greater than 1,respectively. In S 1-S5,S6-S8 and S 9-S12 samples,the contents of ferulic acid were 0.488-0.533,0.603-0.658 and 0.415-0.433 mg/g,respectively;senkyunolide A were 1.184-1.295,1.450-1.588 and 1.307-1.377 mg/g,respectively;E-ligustilide were 0.118-0.125,0.130-0.135 and 0.223-0.229 mg/g,respectively;Z-ligustilide were 7.200-7.681,8.076-8.643 and 4.508-4.996 mg/g, respectively;the differences between two groups were statisti-cally significant (P<0.05). CONCLUSIONS Established ARS-11);fingerprint is simple and accurate ,and can be used for overall quality evaluation of L. sinense from different habitats by combining with multivariate statistical analysis. Ferulic acid , senkyunolide A ,Z-ligustilide and E-ligustilide may be the differential components that affect the quality of L. sinense from different habitats ,the contents of the first 3 components in L. sinense from Ruichang are the highest ,and the content of E-ligustilide in samples from De’an is the highest.