Early predictive value of high density lipoprotein cholesterol for secondary acute kidney injury in sepsis patients.
10.3760/cma.j.cn501120-20210917-00325
- Author:
Jing Yan LI
1
;
Yong Ming YAO
2
;
Ying Ping TIAN
1
Author Information
1. Emergency Department, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
2. Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
- Publication Type:Journal Article
- MeSH:
Acute Kidney Injury/etiology*;
Adult;
Aged;
Cholesterol, HDL;
Female;
Humans;
Male;
Middle Aged;
Prognosis;
ROC Curve;
Retrospective Studies;
Sepsis/diagnosis*;
Young Adult
- From:
Chinese Journal of Burns
2022;38(2):130-136
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To investigate the changes of high density lipoprotein cholesterol (HDL-C) in sepsis patients and its early predictive value for secondary acute kidney injury (AKI) in such patients. Methods: A retrospective case series study was conducted. From June 2019 to June 2021, 232 sepsis patients who met the inclusion criteria were admitted to the Second Hospital of Hebei Medical University, including 126 males and 106 females, aged 24 to 71 years. According to whether complicating secondary AKI, the patients were divided into non-AKI group (n=158) and AKI group (n=74). Data of patients between the two groups were compared and statistically analyzed with independent sample t test or chi-square test, including the sex, age, body mass index (BMI), body temperature, heart rate, primary infection site, combined underlying diseases, acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) score and sepsis-related organ failure assessment (SOFA) score at admission, and the serum levels of C-reactive protein (CRP), procalcitonin, creatinine, cystatin C, and HDL-C measured at diagnosis of sepsis. The multivariate logistic regression analysis was performed on the indicators with statistically significant differences between the two groups to screen the independent risk factors for developing secondary AKI in 232 sepsis patients, and the joint prediction model was established based on the independent risk factors. The receiver operating characteristic (ROC) curve of the independent risk factors and the joint prediction model predicting secondary AKI in 232 sepsis patients were drawn, and the area under the curve (AUC), the optimal threshold, and the sensitivity and specificity under the optimal threshold were calculated. The quality of the above-mentioned AUC was compared by Delong test, and the sensitivity and specificity under the optimal threshold were compared using chi-square test. Results: The sex, age, BMI, body temperature, heart rate, primary infection site, combined underlying diseases, and CRP level of patients between the two groups were similar (P>0.05). The procalcitonin, creatinine, cystatin C, and scores of APACHE Ⅱ and SOFA of patients in AKI group were all significantly higher than those in non-AKI group (with t values of -3.21, -16.14, -12.75, -11.13, and -12.88 respectively, P<0.01), while the HDL-C level of patients in AKI group was significantly lower than that in non-AKI group (t=6.33, P<0.01). Multivariate logistic regression analysis showed that creatinine, cystatin C, and HDL-C were the independent risk factors for secondary AKI in 232 sepsis patients (with odds ratios of 2.45, 1.68, and 2.12, respectively, 95% confidence intervals of 1.38-15.35, 1.06-3.86, and 0.86-2.56, respectively, P<0.01). The AUCs of ROC curves of creatinine, cystatin C, HDL-C, and the joint prediction model for predicting secondary AKI in 232 sepsis patients were 0.69, 0.79, 0.89, and 0.93, respectively (with 95% confidence intervals of 0.61-0.76, 0.72-0.85, 0.84-0.92, and 0.89-0.96, respectively, P values all below 0.01); the optimal threshold were 389.53 μmol/L, 1.56 mg/L, 0.63 mmol/L, and 0.48, respectively; the sensitivity under the optimal threshold were 76.6%, 81.4%, 89.7%, and 95.5%, respectively; the specificity under the optimal threshold values were 78.6%, 86.7%, 88.6%, and 96.6%, respectively. The AUC quality of cystatin C was significantly better than that of creatinine (z=2.34, P<0.05), the AUC quality and sensitivity and specificity under the optimal threshold of HDL-C were all significantly better than those of cystatin C (z=3.33, with χ2 values of 6.43 and 7.87, respectively, P<0.01) and creatinine (z=5.34, with χ2 values of 6.32 and 6.41, respectively, P<0.01); the AUC quality and sensitivity and specificity under the optimal threshold of the joint prediction model were all significantly better than those of creatinine, cystatin C, and HDL-C (with z values of 6.18, 4.50, and 2.06, respectively, χ2 values of 5.31, 7.23, 3.99, 6.56, 7.34, and 4.00, respectively, P<0.05 or P<0.01). Conclusions: HDL-C level in sepsis patients with secondary AKI is significantly lower than that in patients without secondary AKI. This is an independent risk factor for secondary AKI in sepsis patients with a diagnostic value being superior to that of creatinine and cystatin C. The combination of the aforementioned three indicators would have higher predicative valuable for secondary AKI in sepsis patients.