Value of cerebral hypoxic-ischemic injury markers in the early diagnosis of sepsis associated encephalopathy in burn patients with sepsis.
10.3760/cma.j.cn501120-20211006-00346
- Author:
Xiao Liang LI
1
;
Jiang Fan XIE
1
;
Xiang Yang YE
1
;
Yun LI
1
;
Yan Guang LI
1
;
Ke FENG
1
;
She Min TIAN
1
;
Ji He LOU
1
;
Cheng De XIA
1
Author Information
1. Department of Burns, Zhengzhou First People's Hospital, Zhengzhou 450004, China.
- Publication Type:Journal Article
- MeSH:
Adolescent;
Adult;
Aged;
Burns/complications*;
Early Diagnosis;
Female;
Humans;
Male;
Middle Aged;
Prognosis;
ROC Curve;
Retrospective Studies;
Sepsis/diagnosis*;
Sepsis-Associated Encephalopathy;
Young Adult
- From:
Chinese Journal of Burns
2022;38(1):21-28
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To explore the value of cerebral hypoxic-ischemic injury markers in the early diagnosis of sepsis associated encephalopathy (SAE) in burn patients with sepsis. Methods: A retrospective case series study was conducted. From October 2018 to May 2021, 41 burn patients with sepsis who were admitted to Zhengzhou First People's Hospital met the inclusion criteria, including 23 males and 18 females, aged 18-65 (35±3) years. According to whether SAE occurred during hospitalization, the patients were divided into SAE group (21 cases) and non-SAE group (20 cases). The gender, age, deep partial-thickness burn area, full-thickness burn area, and acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) scores of patients were compared between the two groups. The serum levels of central nervous system specific protein S100β and neuron specific enolase (NSE) at 12, 24, and 48 h after sepsis diagnosis (hereinafter referred to as after diagnosis), the serum levels of interleukin-6 (IL-6), IL-10, tumor necrosis factor α (TNF-α), Tau protein, adrenocorticotropic hormone (ACTH), and cortisol at 12, 24, 48, 72, 120, and 168 h after diagnosis, and the mean blood flow velocity of middle cerebral artery (VmMCA), pulsatility index, and cerebral blood flow index (CBFi) on 1, 3, and 7 d after diagnosis of patients in the two groups were counted. Data were statistically analyzed with chi-square test, analysis of variance for repeated measurement, independent sample t test, and Bonferroni correction. The independent variables to predict the occurrence of SAE was screened by multi-factor logistic regression analysis. The receiver operating characteristic (ROC) curve was drawn for predicting the occurrence of SAE in burn patients with sepsis, and the area under the curve (AUC), the best threshold, and the sensitivity and specificity under the best threshold were calculated. Results: The gender, age, deep partial-thickness burn area, full-thickness burn area, and APACHE Ⅱ score of patients in the two groups were all similar (χ2=0.02, with t values of 0.71, 1.59, 0.91, and 1.07, respectively, P>0.05). At 12, 24, and 48 h after diagnosis, the serum levels of S100β and NSE of patients in SAE group were all significantly higher than those in non-SAE group (with t values of 37.74, 77.84, 44.16, 22.51, 38.76, and 29.31, respectively, P<0.01). At 12, 24, 48, 72, 120, and 168 h after diagnosis, the serum levels of IL-10, Tau protein, and ACTH of patients in SAE group were all significantly higher than those in non-SAE group (with t values of 10.68, 13.50, 10.59, 8.09, 7.17, 4.71, 5.51, 3.20, 3.61, 3.58, 3.28, 4.21, 5.91, 5.66, 4.98, 4.69, 4.78, and 2.97, respectively, P<0.01). At 12, 24, 48, 72, and 120 h after diagnosis, the serum levels of IL-6 and TNF-α of patients in SAE group were all significantly higher than those in non-SAE group (with t values of 8.56, 7.32, 2.08, 2.53, 3.37, 4.44, 5.36, 5.35, 6.85, and 5.15, respectively, P<0.05 or P<0.01). At 12, 24, and 48 h after diagnosis, the serum level of cortisol of patients in SAE group was significantly higher than that in non-SAE group (with t values of 5.44, 5.46, and 3.55, respectively, P<0.01). On 1 d after diagnosis, the VmMCA and CBFi of patients in SAE group were significantly lower than those in non-SAE group (with t values of 2.94 and 2.67, respectively, P<0.05). On 1, 3, and 7 d after diagnosis, the pulsatile index of patients in SAE group was significantly higher than that in non-SAE group (with t values of 2.56, 3.20, and 3.12, respectively, P<0.05 or P<0.01). Serum IL-6 at 12 h after diagnosis, serum Tau protein at 24 h after diagnosis, serum ACTH at 24 h after diagnosis, and serum cortisol at 24 h after diagnosis were the independent risk factors for SAE complicated in burn patients with sepsis (with odds ratios of 2.42, 1.38, 4.29, and 4.19, 95% confidence interval of 1.76-3.82, 1.06-2.45, 1.37-6.68, and 3.32-8.79, respectively, P<0.01). For 41 burn patients with sepsis, the AUC of ROC of serum IL-6 at 12 h after diagnosis for predicting SAE was 0.92 (95% confidence interval was 0.84-1.00), the best threshold was 157 pg/mL, the sensitivity was 81%, and the specificity was 89%. The AUC of ROC of serum Tau protein at 24 h after diagnosis for predicting SAE was 0.92 (95% confidence interval was 0.82-1.00), the best threshold was 6.4 pg/mL, the sensitivity was 97%, and the specificity was 99%. The AUC of ROC of serum ACTH at 24 h after diagnosis for predicting SAE was 0.96 (95% confidence interval was 0.89-1.00), the best threshold was 14.7 pg/mL, the sensitivity was 90%, and the specificity was 94%. The AUC of ROC of serum cortisol at 24 h after diagnosis for predicting SAE was 0.93 (95% confidence interval was 0.86-1.00), the best threshold was 89 nmol/L, the sensitivity was 94%, and the specificity was 97%. Conclusions: Serum Tau protein, ACTH, and cortisol have high clinical diagnostic value for SAE complicated in burn patients with sepsis.