Preparation method and characteristics of biomimetic microbubbles
10.3760/cma.j.cn131148-20210823-00585
- VernacularTitle:仿生微泡超声造影剂制备方法及其生物效能的实验研究
- Author:
Tingting SHA
1
;
Xiaoyan MIAO
;
Rongqin ZHENG
;
Zheng ZHANG
;
Weifeng YAO
;
Tinghui YIN
Author Information
1. 中山大学附属第三医院超声科 新型光声(超声)影像实验室,广州 510630
- Keywords:
Biomimetic microbubbles;
Biological characteristics;
Biosafety;
Imaging efficiency
- From:
Chinese Journal of Ultrasonography
2022;31(2):161-168
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To evaluate the feasibility and applicability of using phospholipid-hybridization method for preparing biomimetic microbubbles (Bio-MBs) ultrasound contrast agents.Methods:Leukocyte biomimetic microbubbles (MB leu), platelet biomimetic microbubbles (MB pla) and erythrocyte biomimetic microbubbles (MB ery) were prepared by multiple steps: film-hydration, phospholipid-hybridization, mechanical oscillation. The size and zeta potential of Bio-MBs were measured by dynamic light scattering. A laser scanning confocal microscopy experiment was performed to confirm the presence of membrane proteins on the shell of Bio-MBs. The fluorescence of FITC-labeled typical membrane protein was evaluated using a flow cytometer. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to characterize the membrane protein. Biosafety of Bio-MBs was evaluated by CCK-8 counting kit, blood and major organs. The contrast enhancement effect and stability were observed in vitro and in vivo. An in vivo fluorescence imaging system was performed to evaluate the distribution of Bio-MBs. The application value of biomimetic microbubbles was measured by ultrasound molecular imaging by using ischemia-reperfusion rat models and acute hepatitis rat models. Results:Bio-MBs with spherical shape distributed homogenously, without obvious aggregation. The membrane proteins were successfully integrated into the shell of Bio-MBs.The diameter of three Bio-MBs was similar to that of control microbubbles (MB con) ( P>0.05), three Bio-MBs had a lower zeta potential than MB con ( P<0.05). The Bio-MBs had an appreciable performance in vitro and in vivo biosafety. The Bio-MBs retained the main proteins inherited from cell membrane. Contrast enhanced ultrasound imaging in vitro and in vivo showed that the Bio-MBs had a stable imaging ability.MB leu and MB pla have good targeted imaging effect in two disease models. Conclusions:A series of Bio-MBs ultrasound contrast agents, which have high stability, biosafety and targeted imaging efficiency, were successfully prepared by using phospholipid-hybridization method. This fabrication method for obtaining Bio-MBs can be applied to different clinical scenarios with different cell types in the future.