The study on inflammatory mechanism of cognitive dysfunction induced by 1-bromopropane in rats
10.3760/cma.j.cn371468-20220115-00019
- VernacularTitle:1-溴丙烷致大鼠认知功能障碍的炎性机制研究
- Author:
Shan SHAN
1
;
Zengjin WANG
;
Xiulan ZHAO
Author Information
1. 山东大学公共卫生学院,济南 250012
- Keywords:
1-Bromopropane (1-BP);
Pyrrolidine dithiocarbamate (PDTC);
Nuclear factor kappa B (NF-κB);
Cognitive dysfunction;
Neuroinflammation;
Rat
- From:
Chinese Journal of Behavioral Medicine and Brain Science
2022;31(3):212-219
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To observe the role of neuroinflammation in cognitive dysfunction induced by 1-bromopropane (1-BP) in rats.Methods:Male Wistar rats were randomly divided into control group, 1-BP group, pyrrolidine dithiocarbamate(PDTC)+ 1-BP group and PDTC group, with 15 rats in each group. Rats in 1-BP group and PDTC+ 1-BP group were given 800 mg / kg 1-BP by gavage, and rats in control group and PDTC group were given equal volume corn oil once a day for 12 days; rats in PDTC group and PDTC+ 1-BP group were intraperitoneally injected with 100 mg / kg PDTC 30 minutes after gavage, while rats in control group and 1-BP group were injected with equal volume of normal saline once a day for 12 days.From the 7th to 12th day of the experiment, ten rats in each group were randomly selected and subjected to Morris water maze test for detect the cognitive function. In the positioning navigation test, the learning ability of rats was evaluated by the escape latency and total swimming distance respectively. In the space exploration experiment, the memory ability of experimental animals was evaluated by the number of times crossing the target platform. After the experiment, ten rats were sacrificed, the cerebral prefrontal cortex was harvested. The cytosolic and nuclear NF-κB expression and phosphorylation were detected by Western blot, the mRNA levels of TNF-α and IL-1β were detected by qRT-PCR. After cardiac perfusion fixation, the brains of 5 rats were taken to make frozen sections for immunohistochemical staining and Nissl staining. SPSS 20.0 software was used for statistical analysis, repetitive measurement deviation analysis was used for the analysis of the swimming distance and the escape latency in positioning navigation test, One-way ANOVA was used for the analysis of the number of times crossed the target platform in spatial probe test and other data. Tukey's test was used for Post hoc comparison.Results:The results of Morris water maze showed that there was significant interaction between group and training time in the total swimming distance of rats in the four groups ( F=3.762, P<0.05). Simple effect analysis showed that the total swimming distance of 1-BP group in 1-4 days were longer than those of control group (all P<0.05), while the total swimming distance of PDTC+ 1-BP group in 1-4 days were shorter than those of 1-BP group (all P<0.05). There was significant interaction between group and training time in the escape latency among the four groups ( F=6.541, P<0.01). The escape latencies of 1-BP group in 1-4 days were longer than those of control group (all P<0.05), while the escape latencies of PDTC+ 1-BP group in 1-4 days were shorter than those of 1-BP group (all P<0.05). The results of space exploration experiment showed that there was significant difference in the number of crossing the platform among the four groups ( F=75.333, P<0.01). The number of crossing the platform (1.08±0.29) in 1-BP group was lower than that in the control (3.35±0.05) ( P<0.01). The number of crossing the platform (1.95±0.26) in PDTC+ 1-BP group was higher than that in 1-BP group ( P<0.01). It had significant difference both in the cytoplasm and in the nucleus of the NF-κB protein level in prefrontal cortex among rats of the four groups ( F=20.865, 23.877, both P<0.01). The levels of NF-κB in cytoplasm and nucleus of rats in 1-BP group were both higher than those in control group (cytoplasm: (177.3±32.1)%, (100.0±8.4)%, P<0.01; nucleus: ( 173.2±27.1)%, (100.0±8.4)%, P<0.01). While the levels of NF-κB in cytoplasm and nucleus of 1-BP+ PDTC group were both lower than those of 1-BP group (cytoplasm: (148.7±22.0)%, (177.3±32.1)%, P<0.01; nucleus: (149.7±18.8)%, (173.2±27.1)%, P<0.01). The results of qRT-PCR showed that there were significant differences in the mRNA levels of TNF-α and IL-1β in the prefrontal cortex among the four groups ( F=17.464, 17.382, both P<0.01). The levels of TNF-α and IL-1β mRNA in 1-BP group were higher than those in control group (both P<0.05), and the levels of TNF-α and IL-1β mRNA in PDTC+ 1-BP group were both lower than those in 1-BP group (both P<0.05). The results of immunohistochemistry showed that compared with the control group, the number of microglia and astrocytes in the 1-BP group increased (microglia: (158.30±9.68), (110.20±16.30), P<0.05; astrocytes: (122.76±4.35), (80.24±6.96), P<0.05), and the morphology was also activated, with light staining and reduced number of Nissl bodies in neurons.The number of microglia and astrocytes in PDTC + 1-BP group was lower than that in 1-BP group (microglia: (131.70±14.67), (158.30±9.68), P<0.05; astrocytes: (101.54±4.55), (122.76±4.35), P<0.05), and the Nissl body staining of neurons was significantly deepened. Conclusion:NF-κB signaling pathway might be the key mechanism of 1-BP neurotoxicity. PDTC intervention could significantly improve the neuroinflammatory response and behavioral disorders of experimental animals intoxicated with 1-BP.