Protein Kinase C Controls the Excitability of Cortical Pyramidal Neurons by Regulating Kv2.2 Channel Activity.
10.1007/s12264-021-00773-x
- Author:
Zhaoyang LI
1
;
Wenhao DONG
2
;
Xinyuan ZHANG
2
;
Jun-Mei LU
2
;
Yan-Ai MEI
2
;
Changlong HU
3
Author Information
1. State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438, China. lzy@fudan.edu.cn.
2. State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438, China.
3. State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438, China. clhu@fudan.edu.cn.
- Publication Type:Journal Article
- Keywords:
Excitability;
Kv2.2;
PKC;
Phosphorylation;
Pyramidal neurons
- MeSH:
Action Potentials;
HEK293 Cells;
Humans;
Protein Kinase C/metabolism*;
Pyramidal Cells/enzymology*;
Shab Potassium Channels/genetics*
- From:
Neuroscience Bulletin
2022;38(2):135-148
- CountryChina
- Language:English
-
Abstract:
The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.