Preparation and targeting evaluation of reductant-sensitive oxaliplatin-loaded Fe3O4 nanoparticles
10.16438/j.0513-4870.2021-1000
- VernacularTitle:载奥沙利铂的还原敏感型四氧化三铁纳米粒的体内外靶向性评价
- Author:
Yu WANG
;
Qin-jun CHEN
;
Tao SUN
;
Chen JIANG
- Publication Type:Research Article
- Keywords:
reductant-responsive drug release;
oxaliplatin;
Fe3O4 nanoparticle;
rug delivery;
rug nanoparticle formulation
- From:
Acta Pharmaceutica Sinica
2022;57(1):188-199
- CountryChina
- Language:Chinese
-
Abstract:
The non-specific accumulation and release of drugs are the main factors affecting the therapeutic effect as well as causing toxic side effects of chemotherapeutic drugs. Nowadays, the application of nanotechnology and responsive drug release is an important strategy to improve the tumor-specific accumulation of drugs and reduce their side effects. In this study, an α-enolase targeted peptide (ETP)-modified polyethylene glycol poly-lysine block copolymer loaded with oxaliplatin prodrug was synthesized first, and then, polymer-coating Fe3O4 nanoparticles were prepared by phase transfer dialysis method to improve the blood circulation stability and tumor targeting of oxaliplatin. At the same time, the physicochemical properties, reductant-responsive drug release, cellular uptake, tumor targeting and other biological functions of ETP modified oxaliplatin-loaded Fe3O4 nanoparticles were studied in vitro and in vivo. First, the results of reductant-triggered drug release study showed that the drug-loaded nanoparticles could achieve rapid release of more than 80% of the prototype oxaliplatin within 3 h under the reduction conditions simulating the tumor cytoplasmic microenvironment. Secondly, the results of flow cytometry showed that the modification of ETP could increase the ratio of cellular uptake of drug-loaded nanoparticles in tumor cells, and the way that drug-loaded nanoparticles endocytosed by tumor cells were mainly through the energy-dependent and receptor protein and fossin-mediated endocytosis pathway. The animal procedures were approved by the Institutional Animal Care and Use Committee of School of Pharmacy of Fudan University. Moreover, the results of pharmacokinetic experiment showed that the area under the curve (AUC0-∞) of oxaliplatin could be significantly increased by nano-formulation which was about 5 times than that of free oxaliplatin. Besides, the pharmacokinetic results also showed that the drug-loaded Fe3O4 nanoparticles constructed by covalent linkage and chelation had good overall stability in vivo. Finally, the in vivo imaging results showed that ETP modification could increase tumor accumulation of drug-loaded nanoparticles, which would be conducive to the efficacy of oxaliplatin in tumor lesions. In summary, the oxaliplatin-loaded Fe3O4 nanoparticles with the capability of reductant-responsive drug release have good drug release characteristics, blood circulation stability and tumor targeting ability, and have the potential to improve the anti-tumor therapeutic effect of oxaliplatin.