Effects of decorin on proliferation, migration and invasion of bladder cancer cells
10.3760/cma.j.cn371439-20201007-00064
- VernacularTitle:核心蛋白聚糖对膀胱癌细胞增殖、迁移及侵袭的影响
- Author:
Ziyi WANG
1
;
Hongjie CHEN
;
Ninggang YANG
;
Jun ZHANG
;
Xiangjun ZHANG
;
Xinning YU
;
Zhongyi MA
;
Enlai DAI
Author Information
1. 甘肃中医药大学中西医结合学院,兰州 730000
- Keywords:
Urinary bladder neoplasms;
Cell movement;
Neoplasm invasiveness;
Decorin
- From:
Journal of International Oncology
2021;48(6):335-340
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the effects of decorin (DCN) on the proliferation, migration and invasion of bladder cancer cells.Methods:Bladder cancer T24 cell line was used as the research object. MTT assay was used to detect the inhibitory effect of DCN at different concentrations (0, 5, 10, 20, 30, 40, 50 mg/L) on T24 cell proliferation at 24, 48, 72 and 96 h. The effects of DCN on T24 cell cycle and apoptosis were analyzed by flow cytometry. MTT assay, Transwell migration and invasion experiments were used to detect the effects of DCN on the adhesion, migration and invasion ability of T24 cells. The effects of DCN on TGF-β1 and P21 protein expression were detected by ELISA and Western blotting.Results:T24 cells were treated with 0, 5, 10, 20, 30, 40 and 50 mg/L DCN at 24, 48, 72 and 96 h, and there were statistically significant diffe-rences in cell proliferation activity ( F=168.64, P<0.001; F=165.81, P<0.001; F=291.02, P<0.001; F=148.93, P<0.001). T24 cells were treated with 0, 5, 10, 20, 30, 40 and 50 mg/L DCN for 72 h, and the cell proliferation activities were (60.71±3.03)%, (40.82±2.09)%, (37.24±1.63)%, (25.65±2.55)%, (23.00±2.67)%, (10.78±1.17)%, (11.04±0.96)%, respectively, and there was a statistically significant difference. At the concentration of 40 mg/L, the proliferation activity reached the lowest level, and the inhibitory effect on cell proliferation was the strongest. At concentrations of 40 and 50 mg/L, the cells in G 1 phase reached the peak value, while the cells in S phase reached the lowest value, and the cells in G 2 phase remained unchanged throughout the treatment process. T24 cells were treated with 0, 5, 10, 20, 30, 40 and 50 mg/L DCN for 72 h, and the apoptosis rates of cells were (12.18±1.17)%, (21.24±1.05)%, (19.80±1.20)%, (26.52±1.40)%, (30.86±1.40)%, (52.99±1.22)%, (43.04±2.16)%, respectively, and there was a statistically significant difference ( F=178.54, P<0.001). The differences between 5, 10, 20, 30, 40, 50 mg/L DCN and 0 mg/L DCN were all statistically significant (all P<0.001). When T24 cells were treated with 0, 40 mg/L DCN for 72 h, the cell adhesion rates were (37.14±1.35)% and (59.86±1.95)%, the numbers of migrated cells were 53.86±3.18 and 12.86±1.35, and there were statistically significant differences ( t=25.25, P<0.001; t=31.36, P<0.001). When DCN was applied to T24 cells for 48 h, the numbers of invasion at 0, 40 mg/L were 235.14±3.44 and 160.86±3.13, and there was a statistically significant difference ( t=2.27, P<0.001). When T24 cells were treated with 0, 5, 10, 20, 30, 40 and 50 mg/L DCN for 72 h, the relative expression levels of TGF-β1 were 85.67±3.35, 45.51±1.19, 49.93±4.15, 47.64±3.53, 46.05±3.18, 25.54±2.25, 33.44±4.05, and there was a statistically significant difference ( F=324.58, P<0.001). Compared with 0 mg/L DCN, 5, 10, 20, 30, 40 and 50 mg/L DCN could significantly inhibited the expression of TGF-β1 (all P<0.001). Compared with 0 mg/L DCN, P21 protein was upregulated 72 h after treatment with 40 mg/L DCN. Conclusion:DCN can inhibit proliferation and induce apoptosis of T24 cells in vitro, and has the effect of anti-metastasis of T24 cells.