Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot
- Author:
YaFeng PENG
1
;
XinYu SU
;
LiWei HU
;
Qian WANG
;
RongZhen OUYANG
;
AiMin SUN
;
Chen GUO
;
XiaoFen YAO
;
Yong ZHANG
;
LiJia WANG
;
YuMin ZHONG
Author Information
- Publication Type:Original Article
- From:Korean Journal of Radiology 2021;22(9):1525-1536
- CountryRepublic of Korea
- Language:English
-
Abstract:
Objective:To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF).
Materials and Methods:Thirty-five patients with rTOF (mean age, 12 years; range, 7–18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences.
Results:3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959– 0.991; p < 0.001) as well as right (0.755–0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium).
Conclusion:The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.