Radiomics of Non-Contrast-Enhanced T1 Mapping:Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction
- Author:
Quanmei MA
1
;
Yue MA
;
Tongtong YU
;
Zhaoqing SUN
;
Yang HOU
Author Information
- Publication Type:Original Article
- From:Korean Journal of Radiology 2021;22(4):535-546
- CountryRepublic of Korea
- Language:English
-
Abstract:
Objective:To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI).
Materials and Methods:This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility.
Results:A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility.Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002).Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001).
Conclusion:The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.