Heregulin-β1 Activates NF-E2-related Factor 2 and Induces Manganese Superoxide Dismutase Expression in Human Breast Cancer Cells via Protein Kinase B and Extracellular Signal-regulated Protein Kinase Signaling Pathways
10.15430/JCP.2021.26.1.54
- Author:
Ji-Young PARK
1
;
Soma SAEIDI
;
Eun-Hee KIM
;
Do-Hee KIM
;
Hye-Kyung NA
;
Joo-Seob KEUM
;
Young-Joon SURH
Author Information
1. Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
- Publication Type:Original Article
- From:Journal of Cancer Prevention
2021;26(1):54-63
- CountryRepublic of Korea
- Language:English
-
Abstract:
Heregulin-β1, a ligand of ErbB-2 and ErbB-3/4 receptors, has been reported to potentiate oncogenicity and metastatic potential of breast cancer cells. In the present work, treatment of human mammary cancer (MCF-7) cells with heregulin-β1 resulted in enhanced cell migration and expression of manganese superoxide dismutase (MnSOD) and its mRNA transcript. Silencing of MnSOD abrogated clonogenicity and migrative ability of MCF-7 cells. Heregulin-β1 treatment also increased nuclear translocation, antioxidant response element binding and transcriptional activity of NF-E2-related factor 2 (Nrf2). A dominant-negative mutant of Nrf2 abrogated heregulin-β1-induced MnSOD expression. Treatment with heregulin-β1 caused activation of protein kinase B (Akt) and extracellular signal-regulated protein kinase (ERK). The pharmacological inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase 1/2, which are upstream of Akt and ERK, respectively, attenuated heregulin-β1-induced MnSOD expression and nuclear localization of Nrf2. In conclusion, heregulin-1 induces upregulation of MnSOD and activation of Nrf2 via the Akt and ERK signaling in MCF-7 cells, which may confer metastatic potential and invasiveness of these cells.