Effects of pyrimidine bundle-binding protein-associated splicing factors on the function of hypoxia-induced human retinal microvascular endothelial cells
10.3760/cma.j.issn.1005-1015.2020.02.010
- VernacularTitle:多聚嘧啶序列结合蛋白相关剪接因子对缺氧诱导人视网膜微血管内皮细胞功能的影响
- Author:
Manhong XU
1
;
Linni WANG
;
Tingting LIN
;
Xinjun REN
;
Yifeng KE
;
Liying HU
;
Mingfei JIAO
;
Yong WANG
;
Qiong WANG
;
Yaru HONG
;
Xiaorong LI
;
Lijie DONG
Author Information
1. 天津医科大学眼科医院 天津医科大学眼科研究所 天津医科大学眼视光学院 300384
- From:
Chinese Journal of Ocular Fundus Diseases
2020;36(2):135-142
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To observe the effect of pyrimidine bundle-binding protein-associated splicing factors (PSF) on the function of hypoxia-induced human retinal microvascular endothelial cells (hRMECs).Methods:A three-plasmid system was used to construct lentivirus (LV)-PSF. After LV-PSF infected hRMECs in vitro, the infection efficiency was measured by flow cytometry. Real-time quantitative PCR (RT-PCR) was used to detect the expression of PSF mRNA in hRMECs infected with LV-PSF. The experiment was divided into two parts, in vivo and in vitro. In vivo experiments: 20 healthy C57B/L6 mice at the age of postnatal 7 were randomly divided into normal group, oxygen-induced retinopathy (OIR) group, OIR+LV-Vec group, and OIR+LV-PSF group, each group has five mice. Mice in 3 groups were constructed with OIR models except the normal group and the mice in OIR group were not treated. The mice in the OIR + LV-Vec group and the OIR+LV-PSF group were injected with an empty vector (LV-Vec) or LV-PSF in the vitreous cavity, respectively. The effect of LV-PSF on the formation of retinal neovascularization (RNV) was observed then. In vitro experiments: hRMECs were divided into normal group, hypoxia group, vector group, and PSF high expression group. HRMECs in the normal group were cultured in vitro; hRMECs in the hypoxic group were restored to normal culture conditions for 3 h after 3 h of hypoxia stimulation; hRMECs in the vector group and PSF high expression group were infected with LV-Vec and LV-PSF for 48 h, and hRMECs were returned to normal culture conditions for 24 h with hypoxia stimulation for 3 h. The effect of PSF on cell proliferation was observed by MTT colorimetry. Cell scratch test and Transwell migration experiment were used to observe the effect of PSF on cell migration ability under hypoxia stimulation. RT-PCR was used to observe the mRNA expression of HIF-1α, VEGF and PSF in each group of cells.Results:The LV-PSF of stably expressing PSF was successfully constructed. The infection efficiency was 97% determined by flow cytometry. The level of PSF mRNA in hRMECs infected with LV-PSF was significantly increased and detected by RT-PCR. In vivo experiments: The RNV area of the mice in the OIR group and the OIR + LV-Vec group was significantly increased compared to the normal group ( t=18.31, 43.71), and the RNV area of the mice in the OIR + LV-PSF group was smaller than that in the OIR group ( t=11.30) and OIR + The LV-Vec group ( t=15.47), and the differences were statistically significant ( P<0.05). In vitro experiments: MTT colorimetry results showed that the proliferative capacity of hRMECs in the hypoxic group was significantly enhanced compared with the normal group ( t=2.57), and the proliferative capacity of hRMECs in the PSF high expression group was significantly lower than that of the normal, hypoxic, and vector groups ( t=5.26, 5.46, 3.73), the differences were statistically significant ( P<0.05). The results of cell scratch test showed that the hRMECs could be stimulated by the hypoxia stimulation for 3 hours to restore the normal condition for 24 hours or 48 hours ( t=8.35, 13.84; P<0.05). Compared with the vector group, cell migration rate in the PSF-high expression group was not significant ( t=10.99, 18.27, 9.75, 8.93, 26.94, 7.01; P<0.05). Transwell experiments showed that the number of cells stained on the microporous membrane was higher in the normal group and the vector groups, while the number of cells stained in the PSF high expression group was significantly reduced ( t=9.33, 6.15; P<0.05). The results of RT-PCR showed that the mRNA expression of HIF-1α and VEGF in hRMECs in the hypoxic and vector groups increased significantly compared with the normal group ( t=15.23, 21.09; P<0.05), but no change in the mRNA expression of PSF ( t=0.12, 2.15; P>0.05); compared with the hypoxia group and the vector group, the HIF-1α and VEGF mRNA expression in hRMECs in the PSF high expression group were significantly decreased ( t=10.18, 13.10; P<0.05), but the PSF mRNA expression increased ( t=65.00, 85.79; P<0.05). Conclusion:PSF can reduce the RNV area in OIR model mice. PSF may inhibit hypoxia-induced proliferation and migration of hRMECs through the HIF-1α/VEGF signaling pathway.