Preparation technology of sinomenine hydrochloride liposomes
10.7501/j.issn.0253-2670.2013.04.007
- Author:
Hang-Sheng ZHENG
1
Author Information
1. Zhejiang Chinese Medical University
- Publication Type:Journal Article
- Keywords:
Centrifugation sedimentation-centrifugation ultrafiltration;
Comprehensive design test;
Ether injection;
Liposomes;
pH gradient active drug loading technology;
Reverse phase evaporation;
Sinomenine hydrochloride;
Thin film hydration
- From:
Chinese Traditional and Herbal Drugs
2013;44(4):408-413
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To prepare sinomenine hydrochloride (SIN-HCl) liposomes with high entrapment efficiency (EE) and to illustrate the effects of drug quantity and particle size on EE. Methods: Centrifugation sedimentation-centrifugation ultrafiltration was employed to determine EE of liposomes. Thin film hydration (TFH), reverse phase evaporation (REV), and ether injection (EI) were screened based on EE and formability of liposomes. The effects of water type, pH value, ion concentration of hydration liquid, pH gradient active drug loading, lecithin-cholesterol ratio, and drug-lipid ratio on EE of liposomes were investigated. The relationship between EE and the factors affecting the drug quantity and particle size was probed with a comprehensive design experiment. The stability of typical liposomes was evaluated at 4 °C. Results: The optimal preparation technology was TFH for SIN-HCl liposomes and citrate buffer solution (CBS) was the best hydration liquid. The liposome EE increased with the increase of pH values of CBS. When the pH value of CBS was fixed, the EE increased as a result of decrease in the ion concentration of CBS. pH gradient active drug loading led to increase of EE. The preferable hydration liquid for liposomes was CBS with pH value of 2.5. The optimal ratio of soybean lecithin to cholesterol was 6:1. Increasing ratios of SIN-HCl to soybean lecithin from 1:6 to 6:6 led to a slight decrease in EE of liposomes without probe signification. A quantitative relationship was established between the EE and drug quantity and liposome size. The EE of SIN-HCl liposomes prepared by certain particle size and drug quantity could reach over 80%. The typical liposomes showed a good stability. Conclusion: The technology of pH gradient active drug loading is able to prepare SIN-HCl liposomes with high EE.