Preparation and application of curcumin molecularly imprinted composite membrane based on ATRP technique
10.7501/j.issn.0253-2670.2019.06.013
- Author:
Li-Qiang SU
1
Author Information
1. Institute of Chemistry and Chemical Engineering, Qiqihar University
- Publication Type:Journal Article
- Keywords:
Atom transfer radical polymerization;
Curcumin;
Membrane separation;
Molecular imprinting technique;
Molecularly imprinted composite membrane;
Selective permeation
- From:
Chinese Traditional and Herbal Drugs
2019;50(6):1348-1353
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To prepare the molecularly imprinted composite membrane of curcumin by the atom transfer radical polymerization (ATRP) technique and develop a method for the separation and enrichment of curcumin in actual samples. Methods Curcumin MIM were prepared by thermal polymerization method using curcumin as template molecule, methylacrylic acid as functional monmers, cuprous chloride as catalyst, pentamethyldiethylenetriamine as ligand, and polyvinylidene fluoride as base membrane. The microstructure of MIM was investigated by SEM. The maximum adsorption and adsorption equilibrium time of MIM were investigated by static and dynamic adsorption experiment, and the selective penetration capacity was studied. The MIM as membrane material of osmotic device combined with HPLC was used for separation, enrichment and determination of curcumin in samples. Results The results showed that the prepared curcumin MIM had a regular distribution of pores and a uniform size. The maximum adsorption capacity was 3.81 mg/g, and the adsorption equilibrium could be achieved in 15 min. In the selective permeation process of ferulic acid, quercetin and curcumin, MIM had a high selective permeability to curcumin. The average recovery rates of curcumin in ginger, turmeric and curry were (94.100 ± 3.952)%, (98.300 ± 3.637)%, and (97.900 ± 3.133)%, respectively. The RSD was less than 4.2%. The limit of detection was 1.76 μg/kg. Conclusion The prepared MIM is a new material for strong selectivity, separation and enrichment of Chinese medicine curcumin with fast adsorption speed. At the same time, it also provides reference for chemical composition research of other Chinese materia medica.