Different preparations of magnolol: Preparation, characterization and pharmacokinetics comparative study in SD rats
10.7501/j.issn.0253-2670.2020.17.011
- VernacularTitle: 不同厚朴酚制剂的制备表征及其在SD大鼠体内药动学行为比较
- Author:
Hui-Zhen LIU
1
Author Information
1. Zhengzhou Central Hospital Affiliated to Zhengzhou University
- Publication Type:Journal Article
- Keywords:
Bioavailability;
Dissolution rate;
High pressure homogenization method;
Magnolol;
Pharmacokinetics;
Phospholipids complex;
Solid dispersions;
Solid lipid nanoparticles;
Solvent evaporation method
- From:
Chinese Traditional and Herbal Drugs
2020;51(17):4442-4448
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To prepare magnolol solid dispersions (Mag-SD), magnolol phospholipids complex (Mag-PC) and magnolol solid lipid nanoparticles (Mag-SLN), and compare their effects on the pharmacokinetics in vivo. Methods: Solvent evaporation method was used to prepare Mag-SD and Mag-PC. Their existential state of Mag in Mag-SD and Mag-PC were analyzed by X-ray power diffraction (XRPD). High pressure homogenization method was employed to prepare Mag-SLN, its particle size and Zeta potential were also studied. The dissolution in vitro of Mag-SD, Mag-PC and Mag-SLN were also studied compared to magnolol suspension. SD rats in each group were administered intragastrically with magnolol, Mag-SD, Mag-PC and Mag-SLN, respectively. The concentration of magnolol in blood was analyzed by HPLC, and the main pharmacokinetic parameters were obtained. The pharmacokinetic behavior and bioavailability of magnolol, Mag-SD, Mag-PC and Mag-SLN were also compared. Results: The results of XRPD indicated that magnolol showed an amorphous state in Mag-SD and Mag-PC. The average particle size and Zeta potential of Mag-SLN was (161.37 ± 3.77) nm and (-29.16 ± 1.83) mV, respectively. The results of dissolution in vitro indicated that the cumulative dissolution of magnolol was 30.6% within 12 h. Mag-SD, Mag-PC and Mag-SLN enhanced its cumulative dissolution to 96.3%, 76.4% and 45.9%, respectively. The results of pharmacokinetics in vivo showed that Cmax, AUC0-t and AUC0-∞ of Mag-SD, Mag-PC and Mag-SLN were enhanced greatly compared to magnolol suspension. Mag-PC, Mag-SD and Mag-SLN increased its Cmax from (429.67 ± 53.12) ng/mL to (533.62 ± 59.01), (721.73 ± 103.44) and (1 063.21 ± 108.22) ng/mL, respectively. The bioavailability of Mag-SD, Mag-PC and Mag-SLN were enhanced to 1.38, 2.12 and 3.45 times, respectively. Conclusion: Mag-SD, Mag-PC and Mag-SLN could promote the absorption of magnolol in SD rats notably. In addition, Mag-SLN could give a better effect on the bioavailability.