Effect of Moxibustion on Delayed Memory and Expression of Hippocampal Nestin and Doublecortin Proteins in Dementia Rats
10.13702/j.1000-0607.170552
- Author:
Yin-Qiu FAN
1
Author Information
1. Graduate Faculty, Anhui University of Traditional Chinese Medicine
- Publication Type:Journal Article
- Keywords:
Delayed memory;
Doublecortin;
Hippocampus;
Moxibustion;
Nestin;
Vascular dementia
- From:
Acupuncture Research
2018;43(3):133-139
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE: To observe the effect of "Huayu Tongluo"(Blood-stasis Dispersing and Meridian-collateral Dredging) moxibustion on the delayed memory and expression of Nestin and Doublecortin (DCX) proteins in the hippocampus in vascular dementia (VD) rats in the view of neurogenesis produced by intracerebral transplantation of neural stem cells (NSCs) and endothelial progenitor cells (EPCs). METHODS: Healthy male Wistar rats were randomized into control group, VD model group,NSCs+EPCs group and NSCs+EPCs moxibustion group. The VD model was established by using a modified 2-vessels occlusion method, and neurogenesis was produced by transplantation of NSCs+EPCs (2×106cell/10 µL) into the lateral ventricle for rats of the NSCs+EPCs groups 3 days after successful VD-modeling. Moxibustion was applied to "Dazhui" (GV 14), "Baihui" (GV 20) and "Shenting" (GV 24) once daily for 21 days with an interval of one day between every two 7 days. The Morris Water Maze was used to test the rat's delayed memory ability before and 24 h after the treatment. The expression of Nestin and DCX proteins in the hippocampus tissues was detected using double-labeled immunofluorescence technique. RESULTS: Following modeling, Morris Water Maze tests showed that the average escape latency of location navigation task was significantly prolonged in VD rats(P<0.008)and the times of target platform crossing (spatial probing task) within 120 s were remarkably reduced in VD rats (P<0.008). Compared with pre-treatment in the same one group, the escape latency of NSCs+EPCs and NSCs+EPCs moxibustion groups were considerably reduced (P<0.05), and the average times of target platform crossing of the NSCs+EPCs moxibustion group were markedly increased(P<0.05). The effect of NSCs+EPCs moxibustion was evidently superior to that of simple NSCs+EPCs in shortening the escape latency (P<0.008). The expression levels of Nestin protein were significantly higher in the NSCs+EPCs moxibustion group after 1 and 3 period treatment than those in the NSCs+EPCs group (P<0.05).. CONCLUSION: Moxibustion intervention is able to improve the delayed memory in VD rats, which may be related to its effect in up-regulating the expression of hippocampal Nestin and DCX proteins within 15 days via accelerating neurogenesis.