Effect of electroacupuncture combined with Donepezil on learning-memory ability and expression of hippocampal β-amyloid clearance-related genes in SAMP8 mice
10.13702/j.1000-0607.190081
- Author:
Zhi-Xue YANG
1
Author Information
1. College of Traditional Chinese Medicine, Chongqing Medical University
- Publication Type:Journal Article
- Keywords:
Alzheimer’s disease;
Blood-brain barrier;
Donepezil;
Electroacupuncture;
Learning-memory ability;
β-amyloid
- From:
Acupuncture Research
2020;45(4):281-286
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE: To investigate the effect of electroacupuncture (EA) combined with Donepezil on learning-memory ability and gene expression of β-amyloid (Aβ) clearance-related factors in the hippocampus in senescence-accelerated mouse prone 8 (SAMP8) mice, so as to explore their synthetic effect in improving dementia of Alzheimer's disease (AD).. METHODS: Male SAMP8 mice (30-week-old) were randomly divided into model, medication and EA+medication groups (n=6 mice in each group), and other 6 senescence-resistant 1 (SAMR1) mice were used as the control group. Mice of the medication and EA+medication group received gavage of Donepezil (1.3 mg•kg-1•d-1) once daily for 4 weeks. EA (2 Hz, 1 mA) was applied to "Baihui"(GV20) and "Yintang" (EX-HN3) for 15 min, once daily, 6 days a week for 4 weeks for rats in the EA+medication group. The Morris water maze (MWM) task (including place navigation tests and space exploration trials) was used to assess the mouse's learning-memory ability. Histopathological changes of hippocampus tissue were observed by H.E. staining. The expression levels of matrix metalloprotein 9 (MMP-9), low density lipoprotein receptor-related protein-1 (LRP-1), P-glycoprotein (Pgp, an important drug transporter responsible for multidrug resistance), Claudin-5 (a component of tight junction strands that serves as a physical barrier to prevent solutes and water from passing freely through the paracellular space between epithelial or endothelial cell sheets of blood-brain barrier, BBB) and Aβ mRNAs of the hippocampus tissue were detected by quantitative real-time PCR. RESULTS: Compared with the control group, the average escape latency of place navigation tests, and the expression levels of MMP-9 and Aβ mRNAs were significantly increased (P<0.01), and the number of platform quadrant-crossing times of space exploration trials, and the expression levels of LRP-1, Pgp and Claudin-5 mRNAs considerably decreased in the model group (P<0.01). After the intervention, the learning-memory ability was significantly improved in the medication and EA+medication groups (P<0.01,P<0.05), the expression levels of Aβ mRNAs in the medication and EA+medication groups and MMP-9 mRNA in the EA+medication group were obviously down-regulated (P<0.01), and those of LRP-1 and Pgp mRNAs in the medication and EA+medication groups and Claudin-5 mRNA in the EA+medication group were remarkably up-regulated (P<0.05, P<0.01). The therapeutic effect of EA+medication was apparently superior to that of simple medication in shortening the escape latency (P<0.05,P<0.01) and in down-regulating the expression of MMP-9 and Aβ mRNAs(P<0.01), and in increasing the number of platform quadrant-crossing times(P<0.01), and expression levels of LRP-1, Pgp and Claudin-5 mRNAs (P<0.01). H.E. staining showed scatted and loose arrangement of neurons in the hippocampus, with reduction of number of cell layers and unclear nucleoli, which was relatively milder in the medication and EA+medication groups. CONCLUSION: EA can enhance the effect of Donepezil in improving learning-memory ability in AD mice possibly by regulating expression of MMP-9, LRP-1, Pgp and Claudin-5 mRNAs and strengthening the effect of Donepezil in transporting Aβ via BBB.