Molecular mechanism of quercitrin on osteogenic differentiation and adipogenic differentiation of rat bone marrow stromal stem cells (rBMSCs)
10.1016/j.chmed.2018.01.009
- Author:
Zi-yi GUAN
1
Author Information
1. School of Pharmacy, Jiangxi University of Traditional Chinese Medicine
- Publication Type:Journal Article
- Keywords:
Adipogenic differentiation;
osteogenic Differentiation;
Quercitrin;
rBMSCs
- From:
Chinese Herbal Medicines
2018;10(2):184-190
- CountryChina
- Language:Chinese
-
Abstract:
Objective: The study was designed to investigate the molecular mechanism of quercitrin on osteogenic differentiation and adipogenic differentiation of rBMSCs. Methods: rBMSCs were harvested from SD rats, and determination of alkaline phosphatase (ALP) activity, quantification of mineralization by Alizarin Red S staining, and the mRNA expression of osteogenic differentiation markers (Runx2, BMP-2, and OSX) by RT-PCR after rBMSCs stimulated by osteogenic induction with (0.1–10) µg/mL of quercitrin, quantification of Lipid droplet by Oil Red O staining and the mRNA expression of adipogenic differentiation marker (PPARγ C/EBPα and aP2) by RT-PCR after rBMSCs stimulated by adipogenic induction with (0.1-10) µg/mL of quercitrin. Results: Quercitrin can up-regulate the mRNA expression of osteogenic differentiation markers (Runx2, BMP-2, and OSX) and increase ALP activity and mineralization after osteogenic induction, on the other hand quercitrin can suppress the mRNA expression of adipogenic differentiation markers (PPARγ C/EBPα and aP2) and decrease lipid droplet after adipogenic induction. Conclusion: This study suggested that quercitrin not only stimulated osteogenic differentiation but also inhibited adipogenic differentiation of rBMSCs, which was associated with the up-regulation of Runx2, BMP-2, and OSX mRNA expression and the down-regulation of PPARγ C/EBPα and aP2 mRNA expression.