Effect of low level laser on osteoclasts and collagen fiber remodeling during the process of tooth retention after tooth movement in rats
10.12016/j.issn.2096⁃1456.2020.12.004
- Author:
MIAO Qian
1
;
PENG Peng
2
;
DONG Xiaoxi
3
;
MA Yao
1
;
ZHANG Xizhong
4
Author Information
1. Department of Stomatology, School of Medicine, Nankai University
2. Orthodontic Department of Tianjin Dental Hospital
3. Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences
4. 1. Department of Stomatology, School of Medicine, Nankai University 2.Orthodontic Department of Tianjin Dental Hospital
- Publication Type:Journal Article
- Keywords:
rat;
orthodontics;
tooth movement;
low level laser;
osteoclasts;
collagen fiber;
Masson staining;
TRAP staining
- From:
Journal of Prevention and Treatment for Stomatological Diseases
2020;28(12):776-780
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the effect of low level laser on osteoclast and collagen fiber remodeling during the process of tooth retention after tooth movement in rats and to provide the experimental basis for clinical application.
Methods : In total, 20 eight-week-old Wistar rats were selected to establish a mesial movement model of the maxillary first molar and then randomly divided into four groups after the appliance was removed. In total, 5 rats were included in each group, including baseline group (without force as blank control), control group (without any intervention after removing the force appliance), retention group (teeth were wrapped with orthodontic ligature wires that were screwed into hemp flower as fixed retention to maintain the space between the first molar and incisor after appliances were removed) and retention and low energy laser irradiation group (teeth were wrapped with the orthodontic ligature wires that were screwed into hemp flower as fixed retention and low energy laser irradiation was applied on days 0, 3, 6, 9 and 12 after appliance removal). Two weeks later, all the rats were sacrificed and the first molar tissue blocks of each group were collected. The distribution of osteoclasts and collagen fiber were studied by HE staining, TRAP staining and Masson staining to illustrate the process of alveolar bone and collagen fiber remodeling.
Results : Two weeks after appliances were removed, collagen fibers were deposited on both sides of the root in the baseline group, but no osteoclasts were observed in the distal side of the root. In the control group, collagen fibers on the two sides of the root were not obvious and osteoclasts were active on the distal side. In the retention group, collagen fibers were obvious on the two sides of the root and the osteoclasts on the distal side were less active than the control group. Regarding the retention and low energy laser irradiation group, collagen fibers were significantly obvious and osteoclasts were not seen. The difference was statistically significant between the retention and low energy laser irradiation group and the other three groups (P<0.05).
Conclusion:These results suggest that fixed retention with simultaneous low level laser can effectively promote the synthesis of collagen fibers and inhibit the activity of osteoclasts during the process of tooth retention after movement, thus reducing the possibility of molar recurrence.
- Full text:低能量激光对大鼠牙移动后保持过程中破骨细胞和胶原纤维改建的影响.pdf