Improvement Effects of Ethanol Extract from Taxillus sutchuenensis on Blood Glucose Level ,Liver and Renal Complica- tions in Type 2 Diabetes Mellitus Model Mice and Its Mechanism
- VernacularTitle:桑寄生醇提物改善2型糖尿病模型小鼠血糖水平及其肝肾并发症的作用及机制研究
- Author:
Zeping LUO
1
;
Li LI
2
;
Liwei PAN
1
;
Hongfang LAI
1
Author Information
1. College of Chemical and Biological Engineering,Hechi University,Guangxi Hechi 546300,China
2. College of Pharmacy,Guangxi University of TCM,Nanning 530200,China
- Publication Type:Journal Article
- Keywords:
Taxillus sutchuenensis;
Ethanol extract;
Type 2 diabetes mellitus;
Complication;
Liver injury;
Renal injury;
Mice
- From:
China Pharmacy
2019;30(6):796-801
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE: To study improvement effects of ethanol extract from Taxillus sutchuenensis on blood glucose level, liver and renal complications in type 2 diabetes mellitus (T2DM) model mice and its mechanism. METHODS: T2DM model was established by high-glucose and high-fat feed combined with intraperitoneal injection of streptozotocin. Totally 60 T2DM model mice were randomly divided into model control group (normal saline), positive control group [metformin, 150 mg/(kg·d)] and T. sutchuenensis ethanol extract high-dose, medium-dose and low-dose groups [30, 15, 7.5 g/(kg·d), by crude drug], with 12 mice in each group. Other 12 normal mice were included in blank control group (normal saline). After given drug solution or normal saline for consecutive 28 d, the serum levels of FBG, FINS, IL-2, IL-4, IL-12, IFN-γ, Scr, BUN, ALT and AST were detected; 24 h urine was collected to detect the Ucr levels. The insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated. HE staining was used to observe the pathological change of hepatocytes. The levels of Bcl-2 and Bax in liver tissue as well as the levels of TLR4 and NF-κB p65 in renal tissue were detected. RESULTS: Compared with blank control group, the serum levels of FBG, FINS, IL-4, ALT, AST, BUN, Scr and HOMA-IR value were increased significantly in model control group, while the levels of Ucr, IL-2, IL-12, IFN-γ and ISI value were decreased significantly (P<0.01). The hepatocytes showed obvious pathological changes. Bcl-2 level and Bcl-2/Bax of liver tissue were decreased significantly, while Bax level was increased significantly (P<0.01). The levels of TLR4 and NF-κB p65 in renal tissue were increased significantly (P<0.01). Compared with model control group, histopathological changes of liver were relieved significantly in T. sutchuenensis ethanol extract groups. Except that there was no significant difference in serum level of IFN-γ and level of NF-κB p65 in renal tissue in T. sutchuenensis ethanol extract low-dose group, other indexes were improved significantly (P<0.01 or P<0.05). CONCLUSIONS: T. sutchuenensis ethanol extract can improve high blood glucose, liver and renal complications, and protect liver and renal function in T2DM model mice. The mechanism may be associated with improving immunofunction, up-regulating anti-apoptosis factors, down-regulating the expression of apoptosis-promoting and inflammation- promoting factors so as to maintain the functional status of hepatocytes and reduce the degree of renal cell damage.