Study on Preparation ,Characterization and Cytotoxicity of Baicalin PEG-PE Nanomicelles
- VernacularTitle:黄芩苷PEG-PE纳米胶束的制备、表征与细胞毒性研究
- Author:
Guoqing NING
1
;
Jie WU
1
;
Chenliang GE
1
;
Dingrong ZHOU
2
;
Yixin TANG
1
Author Information
1. The First Affiliated Hospital of Nanhua University,Hunan Hengyang 421001,China
2. Central Laboratory,Xiangya Second Hospital of Central South University,Changsha 410011,China
- Publication Type:Journal Article
- Keywords:
Polyethylene glycol-derivatized phosphatidylethanolamine;
Nanomicelles;
Baicalin;
Release in vitro;
H9c2 cardiomyocyte
- From:
China Pharmacy
2019;30(11):1487-1491
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE: To prepare Baicalin-loaded Polyethylene glycol-derivatized phosphatidylethanolamine (BAI@PEG-PE) nanomicelles, and to characterize it and study its cytotoxicity. METHODS: BAI@PEG-PE nanomicelles were prepared by film hydration method and their appearance characteristics were observed. The particle size, polydispersity index, Zeta potential, drug-loading amount and encapsulation efficiency of the nanomicelles were detected. Drug release of BAI raw material and BAI@PEG-PE nanomicelles in pH 7.4 phosphate buffer were compared within 1-84 h. Using coumarin 6 as fluorescent probe, the distribution of PEG-PE nanomicelles in H9c2 cardiomyocytes were observed. H9c2 cardiomyocytes were divided into model group, BAI raw material group and BAI@PEG-PE nanomicelles group. After treated with serum-free DMEM medium containing no or corresponding drugs for 0.5 h, isoproterenol was used to induce cardiomyocyte apoptosis. Nuclear morphology, cell apoptosis rate and protein expression of Bcl-2 and Bax were compared with among 3 groups. RESULTS: Prepared BAI@PEG-PE nanomicelles were uniform globular shape. The particle size was (16.7±0.8) nm, PDI was 0.11±0.01 and Zeta-potential was (-18.4±0.6) mV; drug-loading amount was (7.84±0.65)%, encapsulation efficiency was (85.7±4.9)% (n=3). Accumulative release rate was 76.5% within 84 h. BAI raw material was released completely within 24 h. PEG-PE nanomicelles could strengthen the intake of coumarin 6 in H9c2 cardiomyocytes, mainly gathering around mitochondria. Compared with model group, the apoptosis morphology of cardiomyocytes were improved significantly in BAI raw material group and BAI@PEG-PE nanomicelles group; apoptosis rate was decreased significantly; protein expression of Bcl-2 was increased significantly; protein expression of Bax was decreased significantly with statistical significance (P<0.05 or P<0.01). Above effects of BAI@PEG-PE nanomicelles group were more significant (P<0.05 or P<0.01). CONCLUSIONS: BAI@PEG-PE nanomicelles are prepared successfully, and show significant sustained-release effect and myocardial targeting, and can prevent cardiomyocyte apoptosis.