Aquatic Toxicity Assessment of Phosphate Compounds.
- Author:
Eunju KIM
1
;
Sunkyoung YOO
;
Hee Young RO
;
Hye Jin HAN
;
Yong Wook BAEK
;
Ig Chun EOM
;
Hyun Mi KIM
;
Pilje KIM
;
Kyunghee CHOI
Author Information
1. Risk Assessment Division, National Institute of Environmental Research, Incheon, Korea. hmikim@korea.kr
- Publication Type:Original Article
- Keywords:
Acute toxicity test;
Eutrophication;
Phosphate;
Risk assessment
- MeSH:
Calcium;
Daphnia;
Disinfectants;
Ecosystem;
Eutrophication;
Lakes;
Lubricants;
Oryzias;
Phosphorus;
Resins, Synthetic;
Risk Assessment;
Rivers;
Toxicity Tests;
Toxicity Tests, Acute
- From:Environmental Health and Toxicology
2013;28(1):e2013002-
- CountryRepublic of Korea
- Language:English
-
Abstract:
OBJECTIVES: Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. METHODS: An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. RESULTS: The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC50) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC50) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC50 was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. CONCLUSIONS: Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C50 was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.