Oxidative stress and autophagy in SK-N-SH cells induced by manganese chloride or 1-methyl-4-phenylpyridinium: a comparative analysis
10.3760/cma.j.issn.1001-9391.2017.02.004
- VernacularTitle: MnCl2和MPP+诱导SK-N-SH细胞氧化应激及自噬的比较
- Author:
Wenli LIU
1
;
Changsong DOU
;
Yu WANG
;
Peng ZHAO
;
Juanling FU
;
Biyun YAO
;
Zongcan ZHOU
Author Information
1. School of Public Health, Peking University, Beijing 100191, China
- Publication Type:Journal Article
- Keywords:
Manganese;
MPP+;
Autophagy;
Oxidative stress;
SK-N-SH cells
- From:
Chinese Journal of Industrial Hygiene and Occupational Diseases
2017;35(2):96-100
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the effect of manganese chloride (MnCl2) or 1-methyl-4-phenylpyridinium (MPP +) on oxidative stress and autophagy in human neuroblastomaSK-N-SH cells and the mechanism of the neurotoxicity of manganese.
Methods:SK-N-SH cells were treated with MnCl2 or MPP+ at doses of 0.062 5, 0.125, 0.25, 0.5, 1.0, and 2.0 mmol/L for 24 hours, and MTT assay was used to measure cell viability. The cells weretreated with MnCl2 or MPP+ at doses of 0.125, 0.25, and 0.5 mmol/L for 24 hours, and flow cytometry was used to measure the content of reactive oxygen species (ROS) in cells, a laser scanning confocal microscope was used to observe autophagosome in cells, and Western blot was used to measure the expression of autophagy-related proteins P62 and LC3-II/LC3-I.
Results:Compared with the control group, the 0.0625-2.0 mmol/L MnCl2 and 0.125-2.0 mmol/L MPP + treatment groups had significant reductions in the viability of SK-N-SH cells, and the 0.25-2.0 mmol/L MnCl2 treatment groups had significantly lower viability than the groups treated with the same doses of MPP+ (all P<0.05) . Compared with the control group, the 0.125-0.25 mmol/L MnCl2 and 0.125-0.5 mmol/L MPP+ treatment groups had significant increases in the content of ROS, and the 0.25-0.5 mmol/L MPP+ treatment groups had significantly higher content of ROS than the groups treated with the same doses of MnCl2 (all P<0.05) . Compared with the control group, the 0.25-0.5 mmol/L MnCl2 andMPP+ treatment groups had significant increases in autophagy-related proteins LC3-II/LC3-I and significant reductions in P62 expression; the 0.125-0.5 mmol/L MPP+ treatment groups had significantly higher LC3-II/LC3-I than the groups treated with the same doses of MnCl2, and the 0.125 and 0.25 mmol/L MPP + treatment groups had significantly lower P62 expression than the groups treated with the same doses of MnCl2 (all P<0.05) .
Conclusion:Both MnCl2 and MPP+ can induce oxidative stress and autophagy in SK-N-SH cells, and MPP+ has a significantly greater inductive effect on autophagy of SK-N-SH cells than MnCl2.