Application evaluation of failure mode and effect analysis in optimization of vascular recanalization process
10.3760/cma.j.issn.2095-4352.2018.07.014
- VernacularTitle: 失效模式与效应分析在血管再通流程优化中的应用效果评价
- Author:
Xiuhong ZHOU
1
;
Xinping DU
;
Kuan WANG
;
Guoxing ZUO
;
Sheng HU
;
Jinhong XUE
;
Dandan YUAN
;
Jiaojiao DU
Author Information
1. Department of Cardiology, the Tianjin Fifth Central Hospital, Tianjin 300450, China
- Publication Type:Journal Article
- Keywords:
Failure mode and effect analysis;
Vascular recanalization procedure;
ST elevation myocardial infarction;
Adverse event;
Prognosis
- From:
Chinese Critical Care Medicine
2018;30(7):686-690
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the clinical application and effect evaluation of failure mode and effect analysis (FMEA) in the optimization of vascular recanalization in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:A total of 389 STEMI patients admitted to the emergency department of the Fifth Central Hospital in Tianjin from January 2014 to January 2015 were served as the control group, and 398 STEMI patients admitted to the chest pain center of the Fifth Central Hospital in Tianjin from January 2016 to October 2017 were served as the experimental group. In the control group, routine emergency treatment was used. At the same time, the intervention room was 24-hour prepared for emergency vascular recanalization. The experimental group used FMEA. Through the usage of FMEA, the main factors those caused the delay in revascularization treatment were determined, and the revascularization process was optimized for these influencing factors, thereby shortening the "criminal" blood vessel opening time of patients. The door-to-balloon dilatation time (D-to-B time), troponin testing time, placement time of the catheterization room, initiation of the catheterization room to balloon dilatation time, and preoperative and 1 week postoperative N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, heart function parameters [left ventricular ejection fraction (LVEF), left ventricular short axis shortening rate (FS), left ventricular end-systolic diameter (LVESD), and left ventricular end-diastolic diameter (LVEDD)] within 1 week, 3 months and 6 months after intervention, and the incidence of main cardiovascular adverse events within 1 month after intervention, hospital mortality, the length of hospital stay, and readmission within 1 year in the patients of two groups were recorded.
Results:D-to-B time (minutes: 70.6±3.6 vs. 79.4±8.7), troponin testing time (minutes: 17.1±2.3 vs. 65.2±6.5), placement time of the catheterization room (minutes: 28.9±9.8 vs. 52.3±12.2) and activation of the catheterization room to balloon expansion time (minutes: 47.3±9.3 vs. 65.1±7.2) in the experimental group were significantly shorter than those in the control group (all P < 0.01). The NT-proBNP levels at 1 week after intervention in the two groups were lower than the preoperative levels, slightly lower in the experimental group, but the difference was not statistically significant. There was no significant difference in cardiac function at 1 week and 3 months after intervention between the two groups. The LVEF and FS at 6 months after intervention in the experimental group were significantly higher than those in the control group [LVEF: 0.622±0.054 vs. 0.584±0.076, FS: (38.1±4.3)% vs. (35.4±6.2)%, both P < 0.01], and LVESD and LVEDD were decreased significantly [LVESD (mm): 31.2±3.8 vs. 34.7±4.2, LVEDD (mm): 49.2±5.3 vs. 52.4±5.6, all P < 0.01]. The length of hospital stay in the experimental group was significantly shorter than that in the control group (days: 8.3±3.2 vs. 13.2±6.8, P < 0.01), the incidence of major cardiovascular adverse events within 1 month after intervention [13.6% (54/398) vs. 19.8% (77/389)], hospital mortality [1.8% (7/398) vs. 4.9% (19/389)], and readmission rate within 1 year [9.5% (38/398) vs. 14.5% (56/389)] in the experimental group were significantly lower than those in the control group (all P < 0.05).
Conclusion:The usage of FMEA to optimize the vascular recanalization procedure can shorten the emergency treatment time of STEMI patients, reduce the occurrence of adverse events, and improve the prognosis.