The role of autophagy in PM2.5-induced inflammation in human nasal epithelial cells
10.3760/cma.j.issn.1673-0860.2019.07.006
- VernacularTitle: 细胞自噬在PM2.5致鼻黏膜上皮炎性反应中的作用机制研究
- Author:
Renwu ZHAO
1
;
Zhiqiang GUO
1
;
Ruxin ZHANG
1
;
Congrui DENG
2
;
Weiyang DONG
2
;
Guoshun ZHUANG
2
Author Information
1. Department of Otorhinolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
2. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Publication Type:Journal Article
- Keywords:
Autophagy;
PM2.5;
Nasal mucosa;
Inflammation
- From:
Chinese Journal of Otorhinolaryngology Head and Neck Surgery
2019;54(7):510-516
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To explore the role of autophagy in PM2.5-induced inflammation in human nasal epithelial cells and related mechanism.
Methods:Human nasal epithelial cells were exposed to different concentration of PM2.5 for different times, and the expression levels of microtubule-associated protein-1 light chain-3 Ⅱ (LC3 Ⅱ) and Beclin1 proteins were measured by Western blot. The typical autophagosome and autolysosome were observed by using transmission electron microscopy (TEM). To observe autophagic flux, mRFP-GFP-LC3 plasmid was transfected to nasal epithelial cells and the punctate staining of mRFP-GFP-LC3 were determined by confocal laser scanning microscope. The expression of inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) in cell culture supernatant were assessed by enzyme-linked immunosorbent assay (ELISA). To assess the role of autophagy in PM2.5-mediated inflammation, autophagy related gene Atg5 and Beclin-1 were silenced by siRNA knockdown, and inflammatory cytokines were analyzed.GraphPad Prism 6.0 was used for statistical analysis.
Results:PM2.5 exposure increased the expression of LC3 Ⅱ and Beclin-1 proteins in a dose- (in PM2.5 group with concentration of 0, 15, 30, 60, 120 μg/ml, the expression of LC3 Ⅱ was 0.021±0.001(±s), 0.037±0.002, 0.058±0.005, 0.075±0.006, 0.085±0.004, respectively, F=126.8, P<0.05; the expression of Beclin-1 was 0.002±0.000, 0.003±0.000, 0.005±0.000, 0.007±0.001, 0.008±0.001, respectively, F=137.3, P<0.05) and time-dependent manner (in PM2.5 group with exposure time of 0, 3, 6, 12, 24 h, the expression of LC3Ⅱ was 0.160±0.007, 0.222±0.003, 0.251±0.015, 0.483±0.029, 0.585±0.035, respectively, F=215.3, P<0.05; the expression of Beclin-1 was 0.059±0.002, 0.080±0.002, 0.087±0.002, 0.183±0.007, 0.228±0.005, respectively, F=137.3, P<0.05) in human nasal epithelial cells. TEM analysis showed typical autophagosome and autolysosome in cells after PM2.5 exposure for 24 h. PM2.5 significantly increased the number of yellow and red dots representing autophagosomes and autolysosomes respectively, indicating autophagic flux was elevated. Moreover, PM2.5 enhanced the secretion of inflammatory cytokines such as IL-6 and TNF-α, which was dramatically prevented by Atg5-siRNA and Beclin-1-siRNA.
Conclusion:Autophagy plays an important role in PM2.5-caused inflammation response in nasal epithelial cells, which can induce release of inflammatory factors such as IL-6 and TNF-α and advance the inflammatory reaction.