The study of hemodynamic mechanism of a novel endovascular stent on complicated abdominal aortic aneurysms
10.3760/cma.j.issn.1001-4497.2020.01.007
- VernacularTitle: 新型导流支架治疗复杂腹主动脉瘤的血流动力学机制
- Author:
Baotong LI
1
;
Yuechao ZHAO
2
;
Hansong SUN
1
;
Shanglin CHEN
1
Author Information
1. Department of Adult Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100037, China
2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100089, China
- Publication Type:Journal Article
- Keywords:
Aortic aneurysms;
Computational fluid dynamics;
Streamliner multilayer flow modulator;
Novel endovascular stent
- From:
Chinese Journal of Thoracic and Cardiovascular Surgery
2020;36(1):26-30
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To detect the hemodynamic mechanism of the novel endovascular stent on complicated abdominal aortic aneurysms by Computational Fluid Dynamics(CFD) firstly, and then compare the effect of the novel endovascular stent and the streamliner multilayer flow modulator(SMFM) stent.
Methods:All medical images were obtained by computed tomography. A semiautomatic segmentation protocol within Mimics(v17.0; Materialise, Leuven, Belgium) was used to extract the threedimensional aortic aneurysms. The stents was generated numerically and fitted along the aortic aneurysms. The lumen volume represented the fluid domain that was discretised in smaller volumes, which defined a mesh within the ICEM software(Ansys ICEM CFD v15.0). Hemodynamic analysis was performed with software Fluent 16.0.
Results:Both kinds of stents can change the pattern of flow distribution. Compared with SMFM, the novel endovascular stent can significantly reduce the flow velocity in aneurysms, the shear force and the pressure on the aneurysms wall.What’s more, the flow velocity of the branch artery was accelerated by the novel endovascular stent.
Conclusion:The novel endovascular stent can significantly reduce the flow velocity in aneurysms, the shear force and the pressure on the aneurysms wall, and acceleratethe the flow velocity of the branch artery.