A Systematic Comparative Evaluation of ⁶⁸Ga-Labeled RGD Peptides Conjugated with Different Chelators
10.1007/s13139-017-0499-0
- Author:
Akanksha JAIN
1
;
Sudipta CHAKRABORTY
;
H D SARMA
;
Ashutosh DASH
Author Information
1. Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India. sudipta@barc.gov.in, adash@barc.gov.in
- Publication Type:Original Article
- Keywords:
Tumor angiogenesis;
PETimaging;
RGD peptides;
⁶⁸Ga;
Bifunctional chelators
- MeSH:
Animals;
Chelating Agents;
In Vitro Techniques;
Melanoma;
Mice;
Pentetic Acid;
Peptides
- From:Nuclear Medicine and Molecular Imaging
2018;52(2):125-134
- CountryRepublic of Korea
- Language:English
-
Abstract:
PURPOSE: The present paper reports a systematic study on the effect of bifunctional chelators (BFC) namely, NOTA, DOTA, and DTPA, on the radiochemical formulation, in vitro stability, and in vivo biological properties of ⁶⁸Ga-labeled RGD peptide derivatives.METHODS: The three RGD conjugates namely, NOTA-Bn-E-[c(RGDfk)]₂, DOTA-Bn-E-[c(RGDfk)]₂, and DTPA-Bn-E-[c(RGDfk)]₂ were radiolabeled with ⁶⁸Ga and the radiolabeling was optimized with respect to the ligand amount, radiolabeling time, and temperature. Further, the ⁶⁸Ga complexes were assessed for their in vitro and in vivo stabilities. The biodistribution studies of the three radiolabeled conjugates were carried out in C57BL/6 mice bearing melanoma tumor at 30 min and 1 h post-adimistration.RESULTS: NOTA-Bn-E-[c(RGDfk)]₂ could be radiolabeled with ⁶⁸Ga at room temperature while DOTA-Bn-E-[c(RGDfk)]₂ and DTPA-Bn-E-[c(RGDfk)]₂ were radiolabeled at high temperature. ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ was found to be the most kinetically rigid in in vitro stability assay. The uptake of the three radiolabeled peptide conjugates in melanoma tumor was comparable at 1 h post-administration (NOTA; DOTA; DTPA (% I.D./g):: 2.78 ± 0.38; 3.08 ± 1.1; 3.36 ± 0.49). However, the tumor/background ratio of ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ was the best amongst the three radiotracers. ⁶⁸Ga-complexes of NOTA-Bn-E-[c(RGDfk)]₂ and DOTABn-E-[c(RGDfk)]₂ showed excellent in vivo stability while ⁶⁸Ga-DTPA-Bn-E-[c(RGDfk)]₂ showed significant metabolic degradation.CONCLUSION: These studies show that ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ would be the most appropriate ⁶⁸Ga-labeled radiotracer and the most amenable for kit formulation.