Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures.
- Author:
Eun Hee KIM
1
;
Ji Hee WON
;
Inhwa HWANG
;
Je Wook YU
Author Information
- Publication Type:Original Article
- Keywords: Cobalt chloride (CoCl2); Hypoxia; NLRP3; Inflammasome; Caspase-1
- MeSH: Animals; Anoxia; Brain; Cobalt; Cytokines; Inflammation; Macrophages; Mice; Neuroglia
- From:Immune Network 2013;13(4):141-147
- CountryRepublic of Korea
- Language:English
- Abstract: Hypoxia has been shown to promote inflammation, including the release of proinflammatory cytokines, but it is poorly investigated how hypoxia directly affects inflammasome signaling pathways. To explore whether hypoxic stress modulates inflammasome activity, we examined the effect of cobalt chloride (CoCl2)-induced hypoxia on caspase-1 activation in primary mixed glial cultures of the neonatal mouse brain. Unexpectedly, hypoxia induced by oxygen-glucose deprivation or CoCl2 treatment failed to activate caspase-1 in microglial BV-2 cells and primary mixed glial cultures. Of particular interest, CoCl2-induced hypoxic condition considerably inhibited NLRP3-dependent caspase-1 activation in mixed glial cells, but not in bone marrow-derived macrophages. CoCl2-mediated inhibition of NLRP3 inflammasome activity was also observed in the isolated brain microglial cells, but CoCl2 did not affect poly dA:dT-triggered AIM2 inflammasome activity in mixed glial cells. Our results collectively demonstrate that CoCl2-induced hypoxia may negatively regulate NLRP3 inflammasome signaling in brain glial cells, but its physiological significance remains to be determined.