Expression of triggering receptors expressed by myeloid cells-1 in macrophages stimulated by Porphyromonas gingivalis-lipopolysaccharide.
- Author:
Yun YANG
1
;
Shan-Shan CHEN
2
;
Chun-Mei XU
1
;
Ya-Fei WU
1
;
Lei ZHAO
1
Author Information
- Publication Type:Journal Article
- Keywords: Porphyromonas gingivalis; lipopolysaccharide; macrophage; periodontitis; triggering receptors expressed by myeloid cells-1; tumor necrosis factor-α
- MeSH: Adult; Humans; Lipopolysaccharides; Macrophages; metabolism; Myeloid Cells; Periodontitis; metabolism; microbiology; Porphyromonas gingivalis; pathogenicity; Triggering Receptor Expressed on Myeloid Cells-1; metabolism; Tumor Necrosis Factor-alpha; metabolism
- From: West China Journal of Stomatology 2018;36(5):475-481
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE:Soluble triggering receptors expressed by myeloid cells-1 (sTREM-1) and inflammatory cytokine tumor necrosis factor-α (TNF-α) in macrophage cells were stimulated by Porphyromonas gingivalis-lipopolysaccharide (Pg-LPS) to investigate the expression of triggering receptors expressed by myeloid cells-1 (TREM-1) and further explore the correlation between TREM-1 and the pathogenesis of periodontitis.
METHODS:THP-1 cells (a human monocytic cell line derived from an acute monocytic leukemia patient) were induced to differentiate THP-1 macrophages by phorbol-12-myristate-13-acetate and were injected with 0 (blank control), 0.5, or 1.0 μg·mL⁻¹ Pg-LPS. The THP-1 cells were then grouped in accordance with incubation time, and each group was incubated for 4, 6, 12, or 24 h. The expression of the TREM-1 mRNA in macrophages was detected by real-time quantitative polymerase chain reaction, while the expression of TREM-1 protein was detected by Western blot; the site where TREM-1 protein expression was observed in macrophages was detected by immunofluorescence staining, and the expression of soluble sTREM-1 and TNF-α in cell culture medium was detected by enzyme-linked immunosorbent assay.
RESULTS:Compared with the blank control group, the expression of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in Pg-LPS-stimulated macrophages was significantly upregulated (P<0.05). The expression of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in the supernatant of cell culture was higher in the 1.0 μg·mL⁻¹ Pg-LPS group than in the 0.5 μg·mL⁻¹ group; this expression was statistically significant since the 6, 4, and 4 h time point (P<0.05). Cell immunofluorescence staining showed that TREM-1 protein was positive when the THP-1 macrophages was stimulated by Pg-LPS (1.0 μg·mL⁻¹) for 24 h, and the staining sites of TREM-1 were mainly located in the cell membrane of the macrophages (P<0.05). The expression level of TNF-α increased in groups stimulated by Pg-LPS, and the expression level of TNF-α was significantly higher in 1.0 μg·mL⁻¹ Pg-LPS stimulated groups than in 0.5 μg·mL⁻¹ Pg-LPS-stimulated groups since the 6 h time point (P<0.05). The expressions of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in 0.5 μg·mL⁻¹ Pg-LPS-stimulated macrophages were positively correlated with one another (r=1, P<0.05), but no statistically significant correlation was found in the expression of TNF-α. The positive correlation between sTREM-1 and TNF-α expressions was detected when macrophages were stimulated by 1.0 μg·mL⁻¹ Pg-LPS (r=1, P<0.05).
CONCLUSIONS:The expression of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in the culture supernatant in Pg-LPS-stimulated macrophages was significantly upregulated on the basis of the concentration of Pg-LPS; moreover, their upregulation was positively correlated with one another. The expression of TNF-α in the supernatant of cell culture was also upregulated and was positively correlated with the expression of sTREM-1 at the group of high Pg-LPS concentration (1.0 μg·mL⁻¹). Results reveal that TREM-1, which has been realized as a proinflammatory receptor protein, can promote the development of periodontitis by regulating the expression of TNF-α in macrophages.