- Author:
Meng PENG
1
;
Ming TAN
2
;
Yan ZENG
2
;
Hongchen ZHENG
2
;
Hui SONG
2
Author Information
- Publication Type:Journal Article
- Keywords: Pichia pastoris; co-expression; rare tRNA abundance; tRNAProCCG gene
- MeSH: Codon; Pichia; Recombinant Proteins
- From: Chinese Journal of Biotechnology 2019;35(1):70-80
- CountryChina
- Language:Chinese
- Abstract: Translocation ribonucleic acid (tRNA) is one of the important components in protein synthesis. In order to explore the effect of the changes of tRNAs corresponding to rare codons (rarity tRNAs) on the expression of exogenous genes, the co-expression system of rare tRNA gene and exogenous gene in Pichia pastoris was constructed. The expression of GFP in P. pastoris can be greatly reduced when a repressor region composed of four continuous proline rare codon CCG was added into the GFP gene. The expression amount of the repressed GFP could be increased about 4.9% when tRNAProCCG gene was cointegrated to the 3' of the repressed GFP gene through pPIC9K to the genome of P. pastoris GS115. Meanwhile, the expression amount of the repressed GFP increased about 12.5% by integrating the repressed GFP gene and tRNAProCCG gene to the genome of P. pastoris GS115 through pPIC9K and pFLDα, respectively. Using the same method, NFATc3T-GFP fusion gene and tRNAProCCG gene were co-expressed in P. pastoris GS115 resulting in 21.3% increased of the expression amount of NFATc3T-GFP fusion protein. In conclusion, tRNAProCCG gene has been confirmed to be a kind of rare tRNAs in P. pastoris GS115. Through co-expression of tRNAProCCG gene and heterologous genes which containing the continuous rare codon CCG, the expression of the repressed heterologous genes could be increased significantly. Furthermore, this co-expression system would contribute to screening and determining the other rare tRNAs.