- Author:
Soo Kyung KIM
1
;
Tae Dong JEONG
;
Woochang LEE
;
Sail CHUN
;
Won Ki MIN
Author Information
- Publication Type:Original Article
- Keywords: Analytical performance; Beckman Coulter AU5822; Chemistry analyzer; Evaluation
- MeSH: Chemistry; Chemistry, Clinical*; Drug Monitoring; Humans; Sodium; Statistics as Topic; Substance Abuse Detection
- From:Laboratory Medicine Online 2014;4(2):77-84
- CountryRepublic of Korea
- Language:Korean
- Abstract: BACKGROUND: AU5822 Automated Clinical Chemistry Analyzer (Beckman Coulter, USA) is a fully automated analytical platform designed for the analysis of general chemistry, specific serologic proteins, therapeutic drug monitoring, and drug abuse testing. AU5822 is a high-throughput system that can process up to 5,800 tests per hour and is easy to maintain. In this study, we evaluated the performance of AU5822 on 31 analytes. METHODS: The precision, linearity, correlation, and sample carryover of 31 analytes were evaluated in accordance with the guidelines of the Clinical Laboratory Standards Institute (CLSI). Lyphochek (Bio-Rad Laboratories Inc., USA), Liquichek (Bio-Rad Laboratories Inc.), Validate (Marine Standard Company, USA), and patient sera were used in the analysis. For the correlation study, we carried out a comparison of AU5822 and Cobas 8000 Modular Analyzer (Roche, Switzerland). RESULTS: The coefficients of variation of all samples showed values below 5%. The coefficient of determination (R2) was > or =0.99, with linearity in the clinically important range. The comparison with Cobas 8000 showed a good correlation, with a correlation coefficient of >0.975 for all of the analytes, excluding sodium that had a correlation coefficient of 0.9641. The test values of percentage sample carryover were less than 0.89%. CONCLUSIONS: AU5822 performed well in terms of precision, linearity, comparison, and sample carryover in the established assays for 31 analytes. Therefore, Beckman Coulter AU5822 Automated Clinical Chemistry Analyzer is expected to be useful for routine chemistry analysis in hospitals with large test volumes.