Role of PI3K∕Akt signaling pathway in propofol-induced reduction of intestinal ischemia-reperfusion injury in rats
10.3760/cma.j.issn.0254-1416.2019.03.017
- VernacularTitle:PI3K∕Akt信号通路在丙泊酚减轻大鼠肠缺血再灌注损伤中的作用
- Author:
Qingwen LI
1
;
Jingyuan XIE
;
Shanshan CUI
;
Guoqing JING
;
Huang DING
;
Xianghu HE
Author Information
1. 武汉大学人民医院麻醉科 430060
- Keywords:
Propofol;
Reperfusion injury;
Intestines;
Phosphatidylinositol 3-kinase;
Pro-tein kinases
- From:
Chinese Journal of Anesthesiology
2019;39(3):319-322
- CountryChina
- Language:Chinese
-
Abstract:
Objective To evaluate the role of phosphatidylinositol 3-kinase ( PI3K)∕protein kinase B ( Akt) signaling pathway in propofol-induced reduction of intestinal ischemia-reperfusion ( I∕R) injury in rats. Methods Thirty-two healthy male Sprague-Dawley rats, aged 2-3 months, weighing 225-275 g, were divided into 4 groups ( n=8 each) using a random number table method: sham operation group ( Sham group), intestinal I∕R group ( I∕R group), propofol group ( P group), and PI3K inhibitor wortmannin plus propofol group ( W+P group) . Intestinal ischemia was induced by occluding the superior mesenteric ar-tery for 45 min followed by 2 h of reperfusion to establish the model of intestinal I∕R injury. Propofol was in-travenously infused at a rate of 20 mg·kg-1 ·h-1 starting from the onset of reperfusion until the end of reper-fusion in group P. Wortmannin 15 μg∕kg was intravenously injected at 25 min before reperfusion, and propofol was intravenously infused at a rate of 20 mg·kg-1 ·h-1 starting from the onset of reperfusion until the end of reperfusion in group W+P. Rats were sacrificed at 2 h of reperfusion, and small intestinal tissues were obtained for microscopic examination of pathologic changes of intestinal mucosa and for determination of wet∕dry weight ratio (W∕D ratio), malondialdehyde (MDA) content (by thiobarbituric acid colorimetric method) , superoxide dismutase ( SOD ) activity ( using xanthine oxidase method ) , myeloperoxidase ( MPO) activity ( by MPO assay) , and phosphorylated Akt ( p-Akt) expression ( by Western blot) . Intes-tinal damage was assessed and scored according to Chiu. Results Compared with group Sham, Chiu' s score, W∕D ratio, MDA content and MPO activity were significantly increased, the SOD activity was de-creased, and p-Akt expression was down-regulated in group I∕R (P<0. 05). Compared with group I∕R, Chiu's score, W∕D ratio, MDA content and MPO activity were significantly decreased, the SOD activity was increased, and p-Akt expression was up-regulated in group P (P<0. 05). Compared with group P, Chiu's score, W∕D ratio, MDA content and MPO activity were significantly increased, the SOD activity was decreased, and p-Akt expression was down-regulated in group W+P (P<0. 05). Conclusion The mechanism by which propofol reduces intestrnal I∕R injury is related to activating PI3K∕Akt signaling path-way and inhibiting inflammatory and oxidative stress responses in rats.