A phantom study on the effects of detector coverage and pitch combined with organ dose modulation techniques on radiation dose and image quality in chest CT
10.3760/cma.j.issn.1005?1201.2019.06.005
- VernacularTitle:胸部CT探测器宽度、螺距联合器官剂量调制技术对辐射剂量和影像质量影响的模体研究
- Author:
Yongxian ZHANG
1
;
Yantao NIU
;
Lili ZHANG
;
Senlin GUO
;
Tianliang KANG
;
Jianxing WU
;
Shijun WANG
;
Wei LI
Author Information
1. 首都医科大学附属北京同仁医院放射科100730
- Keywords:
Radiation dosage;
Image quality;
Organ dose modulation;
Superficial radiation sensitive organ
- From:
Chinese Journal of Radiology
2019;53(6):464-469
- CountryChina
- Language:Chinese
-
Abstract:
Objective To explore the effects of detector width and pitch on radiation dose and image quality when using organ dose modulation (ODM) technology in a wide?area detector CT scanning. Methods Based on the clinical chest scan protocol,3 sets of scans of the chest phantom were performed using any combination of two detector width (40 mm and 80 mm) and pitch (0.500,1.000 and 1.375) with the same parameters:1 Do not use ODM technology (ODM off),2 open ODM (ODM part) 240 mm from scan start layer to breast area,3 open ODM (ODM all) in full 320 mm scan range. A long rod ionization chamber was placed in the fixed position in front of the right breast area. The scanning parameters of each group were measured 7 times, and the volume computed tomography dose index (CTDIvol) and breast skin dose measurement values D were recorded and the mean was calculated and recorded as Dav. The coronal 5 mm thick images of lung and soft tissue algorithms were reformed. It was divided into three parts in the Z?axis direction, and the contrast?to?noise ratio (CNR) and figure of merit (FOM) were measured separately. Independent sample t test was used for CTDI and breast skin doses D and CNR at both detector widths. ANOVA was used for dose and CNR of three sets of pitch (0.500, 1.000, and 1.375) and the three ODM techniques. Result The FOM factor was the largest when using an 80 mm detector with a pitch of 0.992 and partially turning on the ODM. The radiation dose of the three ODM groups decreased in turn, and the effect of ODM on CTDIvol (P=0.019) and breast skin dose (P=0.002) was statistically significant. The width of the detector increased and the dose was increased. The width of the detector was statistically significant for CTDIvol (t=-2.723, P=0.015). There was no statistically significant effect on the breast skin dose (t=-0.908, P=0.377). The effects of the pitch were not statistically significant for CTDIvol (P=0.254) and breast dose (P=0.146). The CNR of the three ODM groups decreased in turn, and the effect of ODM on the soft tissue image CNR was not statistically significant (P=0.146). The CNR of lung algorithm image (P=0.030) had significant effects. The multiple comparisons:only ODM all was significantly different from ODM off (P=0.009). With the increase of detector width,the values of CNR increased,the values of CNR (t=-4.128,P=0.001) of lung images were significantly affected. The effects on the soft tissue images were not statistically significant (P=0.187). There was no statistically significant difference in the effect of pitch on the CNR (P=0.660) of the lung images. The effects of the pitch on the values of CNR of soft tissue images (F=11.756,P=0.001) were statistically significant. By multiple comparisons, the difference of CNR between 0.500 (P=0.000) and 1.375 (P=0.013) was statistically significant compared with that when the pitch was 1.000. There was no significant difference among the three ODM modes (P>0.05) on the values of CNR of upper and middle parts of lung and soft tissue arithmetic images. The differences of CNR between ODM all and the other two groups were statistically significant (P<0.05) on the bottom part of images. Conclusion The changes of detector width and pitch will affect the organs dose modulation technique, and then affect the radiation dose and image quality. When using 80 mm detector with the pitch of 0.992 and partially turning on ODM in chest CT scan,achieving the optimized benefits of quality and dose.