Effect of surface treatment reagents and treatment time on bond strength of glass fiber posts to resin cement
- VernacularTitle:表面处理试剂及处理时间对玻璃纤维桩与树脂粘接强度的影响
- Author:
Han ZHOU
1
;
Min HUI
;
Detian MIAO
;
Le WANG
;
Xiling DONG
;
Xiaoming ZHANG
Author Information
1. 滨州医学院附属医院
- Keywords:
surface treatment;
glass-fiber posts;
resin cement;
bonding strength;
hydrogen peroxide;
phosphoric acid;
silanization;
treatment time
- From:
Chinese Journal of Tissue Engineering Research
2019;23(18):2852-2857
- CountryChina
- Language:Chinese
-
Abstract:
BACKGROUND: At present, there is no uniform standard for the treatment time of chemical reagents for surface treatment of glass fiber posts. Therefore, studying the effect of treatment time of glass fiber post surface treatment reagents on the bond strength between fiber posts and resin cements is of great significance. OBJECTIVE: To evaluate the effect of two chemical agents on the bonding strength of glass fiber post and resin cement after surface pretreatment of glass-fiber posts at different times. METHODS: Forty-eight glass fiber posts were randomly divided into eight groups according to different surface treatment methods, six in each group. Group A received no special treatment; group B was treated with silanization for 1 minute; group C1 underwent a 30% hydrogen peroxide surface treatment for 5 minutes prior to 1-minute silanization; group C2underwent a 30% hydrogen peroxide surface treatment for 10minutes prior to 1-minutesilanization; group C3 underwent a 30% hydrogen peroxide surface treatment for 15 minutes prior to 1-minute silanization; group D1 underwent a 35% phosphoric acid surface treatment for 30 seconds prior to 1-minute silanization; group D2 underwent a 35% phosphoric acid surface treatment for 60 seconds prior to 1-minute silanization; group D3 underwent a 35% phosphoric acid surface treatment for 90 seconds prior to 1-minute silanization. The surface morphology of the treated glass fiber posts was observed under scanning electron microscope. The glass fiber post was bonded to the resin cement to form a cylindrical resin block and cut into a thin sample. The sheet was placed on a universal testing machine for micro-extrusion experiments. The failure mode of the specimens was observed under a stereomicroscope. RESULTS AND CONCLUSION: (1) Scanning electron microscope: the surface of the fiber post had different degrees of matrix dissolution and fiber bundle exposure after hydrogen peroxide and phosphoric acid treatment, but did not destroy the integrity of the fiber bundle. (2) Micro-extrusion experiments: the order of the bonding strength was as follows: group C3 > group C2 > group C1 > group D2 > groupD3 > groupD1> group B > group A, and there was significant difference between groups (P< 0.05) except for groups A and B, groups C2 andC3, and groups D2and D3. (3) Stereo microscope: the failure mode in the groups A and B was almost destruction in adhesion. The other six groups showed destruction in adhesion, but the cohesive failure and mixed failure were increased, and the failure mode changed from destruction in adhesion into cohesive failure and mixed failure. (4) These results indicate that the optimal treatment time of 30% hydrogen peroxide is 10 minutes, and the optimal treatment time of 35% phosphoric acid is 60 seconds. 30% hydrogen peroxide solution treatment of fiber post surface for 10 minutes has great clinical application value.