- Author:
Sung Joon KIM
1
;
Jeong Won LEE
;
Min Kyu KANG
;
Jae Chul KIM
;
Jeong Eun LEE
;
Shin Hyung PARK
;
Mi Young KIM
;
Seoung Jun LEE
;
Soo Ho MOON
;
Byoung Soo KO
Author Information
- Publication Type:Original Article
- Keywords: Lung neoplasms; Radiotherapy planning; Three-dimensional conformal radiotherapy; Arc therapy
- MeSH: Heart; Humans; Lung Neoplasms; Lung; Organs at Risk; Radiotherapy; Radiotherapy, Conformal; Spinal Cord
- From:Radiation Oncology Journal 2018;36(3):241-247
- CountryRepublic of Korea
- Language:English
- Abstract: PURPOSE: A hybrid-dynamic conformal arc therapy (HDCAT) technique consisting of a single half-rotated dynamic conformal arc beam and static field-in-field beams in two directions was designed and evaluated in terms of dosimetric benefits for radiotherapy of lung cancer. MATERIALS AND METHODS: This planning study was performed in 20 lung cancer cases treated with the VERO system (BrainLAB AG, Feldkirchen, Germany). Dosimetric parameters of HDCAT plans were compared with those of three-dimensional conformal radiotherapy (3D-CRT) plans in terms of target volume coverage, dose conformity, and sparing of organs at risk. RESULTS: HDCAT showed better dose conformity compared with 3D-CRT (conformity index: 0.74 ± 0.06 vs. 0.62 ± 0.06, p < 0.001). HDCAT significantly reduced the lung volume receiving more than 20 Gy (V20: 21.4% ± 8.2% vs. 24.5% ± 8.8%, p < 0.001; V30: 14.2% ± 6.1% vs. 15.1% ± 6.4%, p = 0.02; V40: 8.8% ± 3.9% vs. 10.3% ± 4.5%, p < 0.001; and V50: 5.7% ± 2.7% vs. 7.1% ± 3.2%, p < 0.001), V40 and V50 of the heart (V40: 5.2 ± 3.9 Gy vs. 7.6 ± 5.5 Gy, p < 0.001; V50: 1.8 ± 1.6 Gy vs. 3.1 ± 2.8 Gy, p = 0.001), and the maximum spinal cord dose (34.8 ± 9.4 Gy vs. 42.5 ± 7.8 Gy, p < 0.001) compared with 3D-CRT. CONCLUSIONS: HDCAT could achieve highly conformal target coverage and reduce the doses to critical organs such as the lung, heart, and spinal cord compared to 3D-CRT for the treatment of lung cancer patients.