Individualized fracture risk assessment: State-of-the-art and room for improvement
10.1016/j.afos.2018.03.001
- Author:
Tuan V NGUYEN
1
Author Information
1. Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia. t.nguyen@garvan.org.au.
- Publication Type:Review
- Keywords:
Osteoporosis;
Fracture;
Fracture risk assessment;
Genetic profiling;
FRAX;
Garvan
- MeSH:
Asian Continental Ancestry Group;
Bone Remodeling;
Calibration;
Humans;
Mortality;
Osteoporosis;
Quality of Life;
Risk Assessment;
Risk Factors;
ROC Curve
- From:Osteoporosis and Sarcopenia
2018;4(1):2-10
- CountryRepublic of Korea
- Language:English
-
Abstract:
Fragility fracture is a serious clinical event, because it is associated with increased risk of mortality and reduced quality of life. The risk of fracture is determined by multiple risk factors, and their effects may be interactional. Over the past 10 years, a number of predictive models (e.g., FRAX, Garvan Fracture Risk Calculator, and Qfracture) have been developed for individualized assessment of fracture risk. These models use different risk profiles to estimate the probability of fracture over 5- and 10-year period. The ability of these models to discriminate between those individuals who will and will not have a fracture (i.e., area under the receiver operating characteristic curve [AUC]) is generally acceptable-to-good (AUC, 0.6 to 0.8), and is highly variable between populations. The calibration of existing models is poor, particularly in Asian populations. There is a strong need for the development and validation of new prediction models based on Asian data for Asian populations. We propose approaches to improve the accuracy of existing predictive models by incorporating new markers such as genetic factors, bone turnover markers, trabecular bone score, and time-variant factors. New and more refined models for individualized fracture risk assessment will help identify those most likely to sustain a fracture, those most likely to benefit from treatment, and encouraging them to modify their risk profile to decrease risk.