High-Resolution Magnetic Resonance Imaging Using Compressed Sensing for Intracranial and Extracranial Arteries: Comparison with Conventional Parallel Imaging
- Author:
Chong Hyun SUH
1
;
Seung Chai JUNG
;
Ho Beom LEE
;
Se Jin CHO
Author Information
- Publication Type:Original Article
- Keywords: Intracranial artery disease; Image quality; Undersampling; Reconstruction method; Signal-to-noise ratio; Contrast-to-noise ratio; Compressed sensing
- MeSH: Acceleration; Arteries; Healthy Volunteers; Magnetic Resonance Imaging; Methods; Protons; Signal-To-Noise Ratio
- From:Korean Journal of Radiology 2019;20(3):487-497
- CountryRepublic of Korea
- Language:English
- Abstract: OBJECTIVE: To compare conventional sensitivity encoding (SENSE) to compressed sensing plus SENSE (CS) for high-resolution magnetic resonance imaging (HR-MRI) of intracranial and extracranial arteries. MATERIALS AND METHODS: HR-MRI was performed in 14 healthy volunteers. Three-dimensional T1-weighted imaging (T1WI) and proton density-weighted imaging (PD) were acquired using CS or SENSE under the same total acceleration factors (AF(t))-5.5, 6.8, and 9.7 for T1WI and 3.2, 4.0, and 5.8 for PD-to achieve reduced scanning times in comparison with the original imaging sequence (SENSE T1WI, AF(t) 3.5; SENSE PD, AF(t) 2.0) using the 3-tesla system. Two neuroradiologists measured signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and used visual scoring systems to assess image quality. Acceptable imaging was defined as a visual score ≥ 2. Repeated measures analysis of variance and Cochran's Q test were performed. RESULTS: CS yielded better image quality and vessel delineation than SENSE in T1WI with AF(t) of 5.5, 6.8, and 9.7, and in PD with AF(t) of 5.8 (p < 0.05). CS T1WI with AF(t) of 5.5 and CS PD with AF(t) of 3.2 and 4.0 did not differ significantly from original imaging (p > 0.05). SNR and CNR in CS were higher than they were in SENSE, but lower than they were in the original images (p < 0.05). CS yielded higher proportions of acceptable imaging than SENSE (CS T1WI with AF(t) of 6.8 and PD with AF(t) of 5.8; p < 0.0167). CONCLUSION: CS is superior to SENSE, and may be a reliable acceleration method for vessel HR-MRI using AF(t) of 5.5 for T1WI, and 3.2 and 4.0 for PD.