Obstructive sleep apnoea detection using convolutional neural network based deep learning framework
10.1007/s13534-017-0055-y
- Author:
Debangshu DEY
1
;
Sayanti CHAUDHURI
;
Sugata MUNSHI
Author Information
1. Jadavpur University, Kolkata, West Bengal, India. amsayanti@gmail.com
- Publication Type:Original Article
- Keywords:
Artificial neural network (ANN);
Convolutional neural network (CNN);
Electrocardiography;
Obstructive sleep apnoea (OSA);
Polysomnography (PSG)
- MeSH:
Classification;
Electrocardiography;
Humans;
Learning;
Methods;
Noise;
Signal-To-Noise Ratio
- From:
Biomedical Engineering Letters
2018;8(1):95-100
- CountryRepublic of Korea
- Language:English
-
Abstract:
This letter presents an automated obstructive sleep apnoea (OSA) detection method with high accuracy, based on a deep learning framework employing convolutional neural network. The proposed work develops a system that takes single lead electrocardiography signals from patients for analysis and detects the OSA condition of the patient. The results show that the proposed method has some advantages in solving such problems and it outperforms the existing methods significantly. The present scheme eliminates the requirement of separate feature extraction and classification algorithms for the detection of OSA. The proposed network performs both feature learning and classifies the features in a supervised manner. The scheme is computation-intensive, but can achieve very high degree of accuracy—on an average a margin of more than 9% compared to other published literature till date. The method also has a good immunity to the contamination of the signals by noise. Even with pessimistic signal to noise ratio values considered here, the methods already reported are not able to outshine the present method. The software for the algorithm reported here can be a good contender to constitute a module that can be integrated with a portable medical diagnostic system.