- Author:
Ji hoon JUNG
1
;
Byeong Cheol AHN
Author Information
- Publication Type:Review
- Keywords: Brain tumors; Positron emission tomography-computed tomography; ¹⁸F-FDG; C-11 methionine; ¹⁸F-FDOPA
- MeSH: Biology; Brain Neoplasms*; Brain*; Diagnosis; Electrons*; Glioma; Glucose; Gray Matter; Humans; Magnetic Resonance Imaging; Necrosis; Positron-Emission Tomography*; Prognosis; Prospective Studies; Radiopharmaceuticals*; Sensitivity and Specificity
- From:Brain Tumor Research and Treatment 2018;6(2):47-53
- CountryRepublic of Korea
- Language:English
- Abstract: Brain tumors represent a diverse spectrum of histology, biology, prognosis, and treatment options. Although MRI remains the gold standard for morphological tumor characterization, positron emission tomography (PET) can play a critical role in evaluating disease status. This article focuses on the use of PET with radiolabeled glucose and amino acid analogs to aid in the diagnosis of tumors and differentiate between recurrent tumors and radiation necrosis. The most widely used tracer is ¹⁸F-fluorodeoxyglucose (FDG). Although the intensity of FDG uptake is clearly associated with tumor grade, the exact role of FDG PET imaging remains debatable. Additionally, high uptake of FDG in normal grey matter limits its use in some low-grade tumors that may not be visualized. Because of their potential to overcome the limitation of FDG PET of brain tumors, 11C-methionine and ¹⁸F-3,4-dihydroxyphenylalanine (FDOPA) have been proposed. Low accumulation of amino acid tracers in normal brains allows the detection of low-grade gliomas and facilitates more precise tumor delineation. These amino acid tracers have higher sensitivity and specificity for detecting brain tumors and differentiating recurrent tumors from post-therapeutic changes. FDG and amino acid tracers may be complementary, and both may be required for assessment of an individual patient. Additional tracers for brain tumor imaging are currently under development. Combinations of different tracers might provide more in-depth information about tumor characteristics, and current limitations may thus be overcome in the near future. PET with various tracers including FDG, ¹¹C-methionine, and FDOPA has improved the management of patients with brain tumors. To evaluate the exact value of PET, however, additional prospective large sample studies are needed.