Comparison of polycytidylic acid-induced and dexamethasone-induced thymic atrophy and their thymic expression of RIG-Ⅰ like receptors signaling pathway
10.3969/j.issn.1000-484X.2018.04.004
- VernacularTitle:聚肌胞苷酸及地塞米松诱导的胸腺萎缩及胸腺RLR信号通路表达的比较研究
- Author:
Yang LIU
1
;
Song CHEN
;
Sheng-Qiang GONG
;
Jin-Wen GE
;
Hui-Bin ZHU
Author Information
1. 湖南中医药大学第一附属医院
- Keywords:
Polyinosinic:polycytidylic acid (Poly(I:C));
Dexamethasone (DEX);
Thymic atrophy;
RIG-Ⅰ like receptors (RLR)
- From:
Chinese Journal of Immunology
2018;34(4):496-501
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To provide experimental evidences for choosing murine models in the pathogenesis research of thymic impairment induced by viral infection,we compared the impacts of polycytidylic acid(Poly(I:C)) and dexamethasone(DEX) on the thymic morphology and thymic output function,and explored the implication of RLR signaling pathway.Methods: 24 male C57BL/6 mice were randomly assigned into three groups and treated with Poly(I:C),DEX,or saline respectively.Thereafter,their thymic morphology,pathological changes,thymic index,and thymic pathology were examined.Their contents of T-cell receptor excision circles (TRECs) and proportions of the naive CD4+T cell in the peripheral blood were determined to evaluate their thymic output function.The expression levels of thymic RLR/MAVS/IFN-α/β signaling pathway and IL-1β were also measured.Results: Both Poly (I:C) and DEX treatment caused thymic atrophy in appearance and structural destruction under the microscope inspection,and DEX treatment did much more severe damage,especially to the thymic cortex.TRECs decreased significantly in both groups.The proportions of na?ve/memory CD4+T cell subsets remained stable,though total CD4+T cell decreased in DEX group,while the proportion of na?ve CD4+T cell in Poly (I:C) group increased significantly.The expression of RIG-Ⅰ,MDA5,LGP2,and IFN-α/β were up-regulated in DEX group, while it remained unchanged in Poly (I:C) group.Conclusion:Both Poly (I:C) and DEX induced thymic atrophy and the impaired thymic output function.Nevertheless,the expression of RLR-IFN signaling pathway up-regulated more significantly in DEX group instead of in Poly (I:C) group.These results implied the existence of different pathological manifestations and mechanisms underlying the impaired thymic function in different animal models,as well as impact on na?ve/memory CD4+T cell proportions.Our research provides references for choosing animal models in the basic research and drug development for viral infection induced thymic atrophy based on the RLR signaling pathway.