The features of serum K+variation in swine with traumatic hemorrhagic shock within the dry-heat environment
10.3760/cma.j.issn.1671-0282.2018.05.005
- VernacularTitle:干热环境创伤失血性休克猪钾离子变化特点
- Author:
Jiangwei LIU
1
;
Caifu SHEN
;
Yan KANG
;
Daofeng ZHOU
;
Liang XIA
;
Zongren AN
;
Yue DUAN
;
Wenhui SHI
;
Xiang DONG
Author Information
1. 乌鲁木齐
- Keywords:
Traumatic hemorrhagic shock;
Dry-heat environment;
Pig;
Potassiumion;
Lactic acid;
Blood glucose
- From:
Chinese Journal of Emergency Medicine
2018;27(5):480-485
- CountryChina
- Language:Chinese
-
Abstract:
Objective To observe the changes of potassium ion (K+), lactic acid (Lac) and glucose (Glu) in swine with traumatic hemorrhagic shock (THS) inside the dry-heat environment and to explore its possible mechanism. Methods A total of 40 local Landrace piglets were randomly(random number) divided equally into 4 groups: the normal temperature sham operation group (NS), the normal temperature traumatic hemorrhagic shock group (NTHS), the dry-heat sham operation group (DS group) and the dry-heat traumatic hemorrhagic shock group (DTHS). The experiment was carried out in the artifi cia climate cabin simulated the special environment of northwest of China. After exposed to their respective environment[dry-heat environment: (40.5±0.5), plus(10±2)% humidity; normal temperature environment: (25±0.5), plus(35±5)% humidity] for 3 h. Laparotomy were performed in swine of all groups, and then splenectomy and partial hepatectomy were performed only in NTHS and DTHS. The process of exsanguination from the external iliac artery was established to make the MAP reaching to 40-50 mmHg, and thus the traumatic hemorrhagic shock model of swine was successfully made. Blood samples were collected from external iliac artery at different intervals including the time just after exposure for 3 h and the successful establishment of traumatic hemorrhagic shock model (0 h) and then every 30 min after 0 h, serum levels of K+, Lac and Glu were detected. The features of varied serum K+, Lac and Glu were observed in each group. All data were statistically analyzed using One-way ANOVA and Pearson correlation analysis. Results After exposed , the level of serum K+inside the dry-heat environment was higher than that of swine inside the normal temperature group ( P<0.01), however the Glu level was lower in the swine inside dry-heat environment than that of swine inside the normal temperature ( P<0.01).The level of serum K+and Lac of DTHS group were rapidly increased from the establishment of the model to the death in about 3 h, while those of NTHS group were increased slowly. The level of K+and Lac were positively correlated in the two groups amd the correlation coeffi cient were rDTHS=0.927 (P<0.01) and rNTHS=0.539 (P<0.01),respectively. The level of Glu was progressively decrease in DTHS group, while in NTHS group, it was not noticeable. The level of K+and Glu were negatively correlated in the two group, the correlation coeffi cient were rDTHS=-0.804 (P<0.01) and rNTHS=0.420 (P<0.01),respectively. Conclusions The changes of serum K+, Lac and Glu occurred sooner and more obvious in traumatic hemorrhagic shock models inside dry heat environment (DTHS) group than those in NTHS group. The level of serum K+positively correlated with Lac, however, negatively correlated with Glu, which suggested that hyperkalemia and acidosis should be paid more attention to the treatment of traumatic hemorrhagic shock inside the dry heat environment, and the hypoglycemia should be treated at the same time.