Quality Investigation of Quercetin-loaded PLGA-TPGS Nanoparticles
10.3870/j.issn.1004-0781.2017.10.023
- VernacularTitle:槲皮素PLGA-TPGS纳米粒的质量考察
- Author:
Hong XU
1
;
Chenghong ZHANG
;
Xin GUAN
;
Hao DONG
;
Xudong JIA
;
Changsong LIU
;
Meng GAO
;
Yan TIAN
Author Information
1. 大连医科大学基础医学院
- Keywords:
Quercetin;
Nanoparticles;
Drug loading;
Entrapment efficiency
- From:
Herald of Medicine
2017;36(10):1182-1186
- CountryChina
- Language:Chinese
-
Abstract:
Objective To prepare quercetin ( QT )-loaded polylactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate ( PLGA-TPGS) nanoparticles ( QPTN) and QT-loaded polylactic-co-glycolic acid ( PLGA) nanoparticles ( QPN) by using QT as model drug and PLGA-TPGS or PLGA as carrier materials, and to investigate the quality of the two nanoparticles. Methods QPTN and QPN were prepared by using the ultrasonic emulsification-solvent evaporation method, and their surface morphology,size and surface charge were detected by using a transmission electron microscope ( TEM) and a Nano ZS90 light scattering and laser Doppler anemometry, respectively. Drug loading ( DL) , entrapment efficiency ( EE) and in vitro drug release of QT in the two nanoparticles were determined by using a reverse phase-high performance liquid chromatography (RP-HPLC) on Hypersil C18 column (4.6 mm×250 mm, 5 μm) with methanol and 0.03% phosphoric acid (3︰2) as mobile phase, and the detective wavelength was 370 nm. Results TEM images exhibited that two nanoparticles were all spherical and regular. The average sizes of QPTN and QPN were (155.4±2.7) nm and (363.8±3.2) nm, while DL and EE of QPTN were approximately (21.6±2.8)%, (93.7±2.9)% (n=6), and DL and EE of QPN were approximately (15.0±1.5)%, (64.6± 1.6)% (n=6), respectively. Both of nanoparticles exhibited sustained release, and the cumulative QT release of QPTN and QPN reached (85.8±2.8)% and (68.6±1.4)% (n=6) at day 30, respectively, with a significant difference between them (P<0.05) . Conclusion QPTN gets smaller size, higher DL and EE, and exhibits sustained release, and the in vitro cumulative QT release is faster and more complete than QPN relatively.