Effects of aconitine on Ca2+ oscillation in cultured myocytes of neonatal rats.
- Author:
Yan, LIU
;
Shiwei, ZHANG
;
Man, LIANG
;
Qian, LIU
;
Liang, LIU
- Publication Type:Journal Article
- MeSH:
Aconitine/*pharmacology;
Animals, Newborn;
Calcium Signaling/*drug effects;
Cells, Cultured;
Myocytes, Cardiac/cytology;
Myocytes, Cardiac/*metabolism;
Rats, Sprague-Dawley
- From:
Journal of Huazhong University of Science and Technology (Medical Sciences)
2008;28(5):499-503
- CountryChina
- Language:English
-
Abstract:
In order to investigate the effects of aconitine on [Ca2+] oscillation patterns in cultured myocytes of neonatal rats, fluorescent Ca2+ indicator Fluo-4 NW and laser scanning confocal microscope (LSCM) were used to detect the real-time changes of [Ca2+] oscillation patterns in the cultured myocytes before and after aconitine (1.0 micromol/L) incubation or antiarrhythmic peptide (AAP) and aconitine co-incubation. The results showed under control conditions, [Ca2+] oscillations were irregular but relatively stable, occasionally accompanied by small calcium sparks. After incubation of the cultures with aconitine, high frequency [Ca2+] oscillations emerged in both nuclear and cytoplasmic regions, whereas typical calcium sparks disappeared and the average [Ca2+] in the cytoplasm of the cardiomyocyte did not change significantly. In AAP-treated cultures, intracellular [Ca2+] oscillation also changed, with periodic frequency, increased amplitudes and prolonged duration of calcium sparks. These patterns were not altered significantly by subsequent aconitine incubation. The basal value of [Ca2+] in nuclear region was higher than that in the cytoplasmic region. In the presence or absence of drugs, the [Ca2+] oscillated synchronously in both the nuclear and cytoplasmic regions of the same cardiomyocyte. It was concluded that although oscillating strenuously at high frequency, the average [Ca2+] in the cytoplasm of cardiomyocyte did not change significantly after aconitine incubation, compared to the controls. The observations indicate that aconitine induces the changes in [Ca2+] oscillation frequency other than the Ca2+ overload.