Recombinant AAV-mediated expression of human BDNF protects neurons against cell apoptosis in Abeta-induced neuronal damage model.
- Author:
Zhaohui, LIU
;
Dongliang, MA
;
Gaifeng, FENG
;
Yanbing, MA
;
Haitao, HU
- Publication Type:Journal Article
- From:
Journal of Huazhong University of Science and Technology (Medical Sciences)
2007;27(3):233-6
- CountryChina
- Language:English
-
Abstract:
The human brain-derived neurotrophic factor (hBDNF) gene was cloned by polymerase chain reaction and the recombinant adeno-associated viral vector inserted with hBDNF gene (AAV-hBDNF) was constructed. Cultured rat hippocampal neurons were treated with Abeta(25-35) and serued as the experimental Abeta-induced neuronal damage model (AD model), and the AD model was infected with AAV-hBDNF to explore neuroprotective effects of expression of BDNF. Cell viability was assayed by MTT. The expression of bcl-2 anti-apoptosis protein was detected by immunocytochemical staining. The change of intracellular free Ca ion ([Ca2+]i) was measured by laser scanning confocal microscopy. The results showed that BDNF had protective effects against A-induced neuronal damage. The expression of the bcl-2 anti-apoptosis protein was raised significantly and the balance of [Ca2+]i was maintained in the AAv-hBDNF treatment group as compared with AD model group. These data suggested that recombinant AAV mediated a stable expression of hBDNF in cultured hippocampal neurons and resulted in significant neuron protective effects in AD model. The BDNF may reduce neuron apoptosis through increasing the expression of the bcl-2 anti-apoptosis protein and inhibiting intracellular calcium overload. The viral vector-mediated gene expression of BDNF may pave the way of a novel therapeutic strategy for the treatment of neurodegenerative diseases such as Alzheimer's disease.