- Author:
Hue VANG
1
;
Gehoon CHUNG
;
Hyun Yeong KIM
;
Seok Beom PARK
;
Sung Jun JUNG
;
Joong Soo KIM
;
Seog Bae OH
Author Information
- Publication Type:Original Article
- Keywords: nociceptor; trigeminal ganglion; tooth pain; peripherin; NF200; ATF3
- MeSH: Animals; Dentin; Intermediate Filament Proteins; Membrane Glycoproteins; Molar; Myelin Sheath; Nerve Tissue Proteins; Neurofilament Proteins; Neurons; Neurons, Afferent; Nociceptors; Rats; Trigeminal Ganglion
- From:Experimental Neurobiology 2012;21(2):68-74
- CountryRepublic of Korea
- Language:English
- Abstract: The long belief that dental primary afferent (DPA) neurons are entirely composed of nociceptive neurons has been challenged by several anatomical and functional investigations. In order to characterize non-nociceptivepopulation among DPA neurons, retrograde transport fluorescent dye was placed in upper molars of rats and immunohistochemical detection of peripherin and neurofilament 200 in the labeled trigeminal ganglia was performed. As the results, majority ofDPA neurons were peripherin-expressing small-sized neurons, showing characteristic ofnociceptive C-fibers. However, 25.7% of DPA were stained with antibody against neurofilament 200, indicating significant portion of DPA neurons are related to large myelinated Abeta fibers. There were a small number of neurons thatexpressed both peripherin and neurofilament 200, suggestive of Adelta fibers. The possible transition of neurochemical properties by neuronal injury induced by retrograde labeling technique was ruled out by detection of minimal expression of neuronal injury marker, ATF-3. These results suggest that in addition to the large population of C-fiber-related nociceptive neurons, a subset of DPA neurons is myelinated large neurons, which is related to low-threshold mechanosensitive Abeta fibers. We suggest that these Abeta fiber-related neurons might play a role as mechanotransducers of fluid movement within dentinal tubules.