Endothelial progenitor cells combined implantation improves proliferation and suppresses apoptosis of neural stem cells and angiogenesis of MCAO/R rats
- VernacularTitle:血管内皮祖细胞对共同植入缺血再灌注模型大鼠脑内的神经干细胞增殖、凋亡和血管形成的调节
- Author:
Qizhi FU
;
Zhiguo QI
;
Xiaofeng ZHU
;
Peng XIE
- Publication Type:Journal Article
- Keywords:
neural stem cells;
endothelial progenitor cells;
ischemic and reperfusion
- From:Journal of Third Military Medical University
1988;0(06):-
- CountryChina
- Language:Chinese
-
Abstract:
Objective To investigate the effect of endothelial progenitor cells (EPCs) which complexed with neuron stem cells (NSCs) after transplanted into ischemia and reperfusion (I/R) rat model on the proliferation and apoptosis of the NSCs and vasal construction. Methods Totally 150 SD adult male rats were randomly and equally divided into 5 groups, sham-operation group, I/R group, I/R+NSCs group, I/R+EPCs group, and I/R+NSCs+EPCs group. The rats were further divided into 5 subgroups according to the time points of 3, 7, 14, 30 and 60 d after transplantation. I/R rat model was established by reversiblyligating middle cerebral artery occlusion. NSCs were derived from the hippocampus of SD rats born in 24 h and identified with Nestin staining. EPCs were obtained from the artery blood of SD rats and verified with immunocytochemical stainings of CD31, CD34 and KDR after culture. The complex of NSCs and EPCs was produced with aid of laminin. Then the complex were transplanted into the ischemia penumbra of corresponding model rat brain. The proliferation and apoptosis of NSCs, and the fomation of new vessels were observed through immunohistochemistry and double-labeled immunofluorescence staining. Results The proliferation of NSCs was increased, apoptosis cells were decreased and the new vessels were raised in the complex transplantation when compared with single NSCs or EPCs transplantation groups. Conclusion The complex of NSCs and EPCs transplantation improves the proliferation of NSCs, suppresses cell apoptosis and promotes the formation of new vessels.