Investigations on biological functions of heat shock transcription factor 1 (HSF1) using a gene knock out mouse model
- Author:
Xianzhong XIAO
;
Guangwen CHEN
;
Jialu YOU
;
J.benjamin IVOR
- Publication Type:Journal Article
- From:
Chinese Journal of Pathophysiology
2001;17(8):793-
- CountryChina
- Language:Chinese
-
Abstract:
HSF1 is the major heat shock transcription factor that binds heat shock element (HSE) in the promoter of heat shock proteins (HSPs) and controls rapid HSP induction in cells subjected to various stresses such as elevated temperature, chemicals, or exposure to toxins. Although at least four members of the vertebrate HSF have been cloned, details of their individual physiological roles remain relatively obscure. To clarify the exact in vivo functions of HSF1 and assess whether HSF1 exhibits redundant or unique roles, we have created homozygous Hsf1-/- mice using standard gene targeting techniques and isolated Hsf1-/- embryonic fibroblasts. Here we demonstrate that heat shock response (HSR) was not attainable in Hsf1-/- embryonic fibroblasts, and this response was required for thermotolerance and protection against heat-induced apoptosis, and that homozygous Hsf1-/- mice, which survived to adulthood according to genetic background, exhibited multiple phenotypes including: (1) placental defects that reduced embryonic viability after late midgestation (day 13.5); (2) growth retardation; (3) female infertility caused by preimplantation lethality, and (4) increased mortality (+/+ vs -/-, P<0.05) and exaggerated production of proinflammatory cytokine, TNF α (+/- vs -/-, P<0.05) after endotoxin challenge. Interestingly, although Hsf1-/- mice exhibited placental defects and embryonic death, basal HSP expression is not appreciably altered during embryonic development by the HSF1 null mutation, suggesting this factor might be involved in regulating some non-HSP genes or signaling pathways which may be important for development. Taken together, our results established direct causal effects for the HSF1 transactivator in regulating diverse physiological and pathophysiological conditions such as developnent, growth, reproduction, apoptosis and sepsis. The present work also provided a useful mammalian model for further investigating the implications of Hsf1 and its target genes (HSPs and other possible non-HSP genes) in various physiological and pathophysiological processes.