Biomechanical effects of intervertebral disc degeneration on the cervical spine:a finite element analysis
10.3969/j.issn.2095-4344.2017.11.019
- VernacularTitle:有限元分析:椎间盘退变对颈椎生物力学的影响
- Author:
Bin LI
;
Wenzhi ZHAO
;
Bingzhi CHEN
- From:
Chinese Journal of Tissue Engineering Research
2017;21(11):1748-1752
- CountryChina
- Language:Chinese
-
Abstract:
BACKGROUND: The biomechanics of cervical spine is complicated. It is an important way to select the appropriate biomechanical model and research method so as to explore the diagnosis and evaluation mechanism of cervical spine injury and prognosis judgement.OBJECTIVE: To discuss the alternation of cervical biomechanics after the degeneration of cervical disc and the influence of degeneration on cervical stability.METHODS: (1) A three-dimensional finite element model of cervical spine was established from the CT scan images of cervical spine of a healthy male volunteer, Solid-Works2015, HyperMesh and ANSYS11.0. We created a cervical three-dimensional finite element model. To simulate the degenerative disc by modified the mechanical characters and height of the disc model, we observed the biomechanics of the impact on the cervical spine (the range and the stress on intervertabral disc).RESULTS AND CONCLUSION: (1) The entire model with a total of 97705 nodes and 372896 elements. Ligament and joint capsule were also constructed. Face to face contact element was used in the facet joint, with complete structure and high accuracy of measurement of spatial structure. (2) The range of motion of cervical spine increased during degeneration compared with normal cervical segments (P < 0.05). (3) Intervertebral disc degeneration caused angle increase at disc and motion segment. Osteophyte formed on vertebral edge. Intervertebral disc degeneration caused cervical instability. Simultaneously, instability increased the disc degeneration.