Molecular cloning and characterization of four small GTPase genes from medicinal fungus Polyporus umbellatus.
- Author:
Mengmeng LIU
;
Chao SONG
;
Yongmei XING
;
Shunxing GUO
- Publication Type:Journal Article
- From:
Acta Pharmaceutica Sinica
2015;50(9):1186-91
- CountryChina
- Language:Chinese
-
Abstract:
Four small GTPase genes which may be relative to sclerotial development were firstly cloned from medicinal fungus Polyporus umbellatus using rapid amplification of cDNA end PCR (RACE) method. The results showed that full-length cDNA of PuRhoA was 698 bp contained 585 bp ORF, which was predicted to encode a 194 amino acid protein with a molecular weight of 21.75 kD with an isoelectric point (pI) of 6.44; the full length cDNA of PuRhoA2 was 837 bp in length and encoded a 194 amino acid protein with a molecular weight of 21.75 kD and an isoelectric point (pI) of 6.33; the full length cDNA of Puypt1 was 896 bp in length and encoded a 204-aa protein with a molecular weight of 22.556 kD and an isoelectric point (pI) of 5.75; the full length cDNA of PuRas was 803 bp in length and encoded a 212-aa protein with a molecular weight of 23.821 kD and an isoelectric point (pI) of 5.2. There are fani acyl transferase enzyme catalytic site and myrcene-transferase enzyme catalytic site in PuRhoA1 while the PuRhoA2 only possess myrcene-transferase enzyme catalytic site. Puypt1 contains the Rab1-Ypt1 conserved domain of small GTPase family and PuRas contains the fani acyl transferase enzyme catalytic site. According to the phylogenetic analysis all these four small GTPase clustered with basidiomycete group. Quantitative real-time PCR analysis revealed that Puypt1, PuRas and PuRhoA1 transcripts were significantly higher in the beginning of sclerotial formation than that in the mycelia, whereas the transcripts levels of PuRhoA2 gene were particularly lower in sclerotia than that in mycelia, suggesting that these four genes might be involved in P umbellatus selerotial development.